Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (9): 714-720    DOI: 10.11901/1005.3093.2014.651
  本期目录 | 过刊浏览 |
基于堆焊成形钛合金高周疲劳实验数据的R-S-N模型
朱良1(),王晶1,李晓慧1,锁红波2,张亦良1
1. 北京工业大学 机械与应用电子技术学院 北京 100022
2. 北京航空制造工程研究所 高能束流加工技术重点实验室 北京 100024
R-S-N Mathematical Model Based on TC18 by BW High Cycle Fatigue Test Data
Liang ZHU1,*(),Jing WANG1,Xiaohui LI1,Hongbo SUO2,Yiliang ZHANG1
1. College of Mechanical Engineering and Applied Electronics Technology Beijing University of Technology, Beijing 100022, China
2. Science and Technology on Power Beam Processing Lab Beijing Aeronautical Manufacturing Technology Research Institute, Beijing 100024, China
引用本文:

朱良,王晶,李晓慧,锁红波,张亦良. 基于堆焊成形钛合金高周疲劳实验数据的R-S-N模型[J]. 材料研究学报, 2015, 29(9): 714-720.
Liang ZHU, Jing WANG, Xiaohui LI, Hongbo SUO, Yiliang ZHANG. R-S-N Mathematical Model Based on TC18 by BW High Cycle Fatigue Test Data[J]. Chinese Journal of Materials Research, 2015, 29(9): 714-720.

全文: PDF(1280 KB)   HTML
摘要: 

针对应力比对疲劳寿命影响的问题, 以TC18钛合金堆焊成形(利用多层堆焊的方法制备)试样为研究对象, 进行了3种应力比(R=0.5、R=0.06、R=-1)的疲劳实验, 得出相应的疲劳极限, 应用“应力幅值寿命模型”和“三参数寿命模型”得到6条S-N曲线。根据裂纹扩展速率与疲劳寿命的积分关系, 以两种疲劳寿命数学模型为基础, 系统地研究了应力比(R)与疲劳寿命曲线(S-N)的关系, 提出了考虑应力比的疲劳寿命(R-S-N)数学模型。根据本文提出的修正公式, 建立了适用TC18钛合金堆焊成形材料的两种R-S-N数学模型, 结果表明: 用应力幅值寿命模型可对中等疲劳寿命区进行准确的预测, 而三参数寿命模型更适合中长寿命区域的预测。提出的两种R-S-N数学模型与实验值吻合良好, 并可在工程上预测任意应力比下的疲劳寿命曲线。

关键词 材料科学基础学科应力比疲劳寿命疲劳极限R-S-N数学模型    
Abstract

For the influence of stress ratio on fatigue life, fatigue tests of TC18 titanium alloy produced by build-up welding (TC18 by BW) samples were carried out under three stress ratios (R=0.5、R=0.06、R=-1), to draw three fatigue limits and 6 S-N curves of “stress amplitude life model ” and “ three-parameter model ”. Based on the integral relationship of the crack growth rate and fatigue life and considering both of mathematical models of fatigue life, a systematic investigation of the relationship between stress ratio (R) and fatigue life curve (S-N) was performed to build the fatigue life mathematical model (R-S-N). According to the modified formula proposed in this paper, the establishment of two R-S-N mathematical models, applicable for TC18 by BW materials. The results show that “stress amplitude” model can accurately predict moderate fatigue life, and “three-parameter fatigue” model is more suitable for the prediction of long-life area. The predictive value of two proposed R-S-N mathematical models are in better agreement with the experimental values, they can accurately predict the fatigue curve under any stress ratio in engineering.

Key wordsfoundational discipline in materials science    stress ratio    fatigue life    fatigue limit    R-S-N mathematical models
收稿日期: 2014-11-06     
图1  疲劳试样尺寸
Rj Number of Valid Sample Pairing Number Fatigue Limit /MPa Standard Deviation / MPa Coefficient Variation Regulation Coefficient Variation
0.5 12 6 889.17 20.7 0.023 0.040
0.06 13 6 747.08 14.2 0.019 0.040
-1 14 7 529.29 9.76 0.018 0.048
表1  疲劳极限总结果
R Smax lgSmax Sa lgSa lgN n
0.5 990 2.9956 247.5 2.3936 5 6
962.5 2.9834 240.6 2.3813 5.19 7
935 2.9708 233.8 2.3688 6.09 5
907.5 2.9578 226.9 2.3558 6.51 4
0.06 880 2.9445 413.6 2.6166 5.33 6
852.5 2.9307 400.7 2.6028 5.66 4
825 2.9165 387.8 2.5886 5.94 4
-1 600 2.7782 600 2.7782 4.57 7
560 2.7482 560 2.7482 4.82 6
550 2.7404 550 2.7404 4.88 6
表2  成组法实验结果
R Equations of Sa-N curve Equations of Smax-N curve
0.5 S a 43.22 N = 10 108.35 ( S m a x - 889.17 ) 2.14 N = 10 9.32
0.06 S a 21.8 N = 10 62.37 ( S m a x - 747.08 ) 2.61 N = 10 10.89
-1 S a 8.24 N = 10 27.47 ( S m a x - 529.29 ) 0.6 N = 10 5.68
表3  不同应力比下的Sa-N、 (Smax-S0)-N曲线方程
图2  应力比(R=0.5, R=0.06, R=-1)疲劳极限升降图
图3  Sa-N曲线
R Equations a b
0.5 S a 43.22 N = 10 108.35 108.35 43.22
0.06 S a 21.8 N = 10 62.37 62.37 21.8
-1 S a 8.24 N = 10 27.47 27.47 8.24
  
R Equations a b
0.5 ( S m a x - 889.17 ) 2.14 N = 10 9.32 9.32 2.14
0.06 ( S m a x - 747.08 ) 2.61 N = 10 10.89 10.89 2.61
-1 ( S m a x - 529.29 ) 0.6 N = 10 5.68 5.68 0.6
  
Predictive value/MPa Experimental value/MPa Relative Error/%
S ^ 50 0.5 842.73 889.17 5.22
S ^ 50 0.06 718.01 747.08 3.89
S ^ 50 - 1 529.29 529.29 0
表6  不同应力比下的疲劳极限值
图4  Smax-N曲线
图5  图5a 实测与模型的Sa-N 曲线和图5b 实测与预测的Smax-N 曲线
图6  不同R 下的Sa-N 和Smax-N 曲线
1 GUO Yanjie,Influence of stress ratio on fatigue behavior of high strength steel, World Metals, 2009-11-17(12), (2009)
1 (郭廷杰, 高强度钢应力比对疲劳性能影响, 世界金属导报, 2009-11-17(12), (2009))
2 CAI Huanxin,CHENG Hao, SUN Jinxiu, Influencing regularity of stress ratio on fatigue strength of 16Mn steel welded joints, Shanxi architecture, 33(25), 102(2007)
2 (蔡焕新, 程 浩, 孙金秀, 应力比对16Mn钢焊接接头疲劳强度的影响规律, 山西建筑, 33(25), 102(2007))
3 XU Shiwen,DONG Mansheng, HU Zongjun, NIU Zhongrong, Fatigue test research on steel 42CrMo, Journal of Hefei University of Technology, 31(9), 1506(2008)
3 (许世文, 董满生, 胡宗军, 牛忠荣, 42CrMo钢疲劳试验研究, 合肥工业大学学报, 31(9), 1506(2008))
4 SHA Guiying,HAN Yu, LIU Teng, WANG Jie, LI Chaohua, Influence of stress ratio on fatigue behavior of Mg-3Al-2Sc alloy, Light Allow Fabrication Technology, 40(9), 61(2012)
4 (沙桂英, 韩 玉, 刘 腾, 王 杰, 李朝华,应力比对Mg-3Al-2Sc合金疲劳行为的影响, 轻合金加工技术, 40(9), 61(2012))
5 H. Q. Xue, H. Tao, R. P. Shao, B. Claude,Effect of stress ratio on long life fatigue behavior of Ti-Al alloy under flexural loading, Transactions of Nonferrous Metals Society of China, 18(3), 499(2008)
6 C. Q. Sun, Z. Q. Lei, Y. S. Hong,Effects of stress ratio on crack growth rate and fatigue strength for high cycle and very-high-cycle fatigue of metallic materials, Mechanics of Materials, 69(1), 227(2014)
7 S. Ishihara, A. J. Mcevily, M. Sato, K. Taniguchi, T. Goshima, The effect of load ratio on fatigue life and crack propagation behavior of an extruded magnesium alloy, International Journal of Fatigue, 31(11-12),(1788)2009
8 T. Sakai, Y. Sato, Y. Nagano, M. Takeda, N. Oguma,Effect of stress ratio on long life fatigue behavior of high carbon chromium bearing steel under axial loading, International Journal of Fatigue, 28(11), 1547(2006)
9 K. Tokaji,Effect of stress ratio on fatigue behavior in SiC particulate-reinforced aluminium alloy composite, Department of Mechanical and Systems Engineering, 28(6), 539(2005)
10 XIONG Junjiang, Fatigue and Fracture Reliability Engineering, First edition, (Beijing, National Defend Industy Press, 2008) p.60
10 熊俊江, 疲劳断裂可靠性工程学, 第一版, (北京, 国防工业出版社, 200860)
11 P. Paris, F. A. Erdogan, Critical analysis of crack growth laws, Journal of Basic Engineering, 85(3),(528)1963
12 WANG Kunqian,XU Renping, LIN Jiehui, Fatigue crack growth probability model based on stress ratio, Journal of Aerospace Power, 24(9), 2012(2009)
12 (王坤茜, 徐人平, 林捷晖, 考虑应力比的疲劳裂纹扩展概率模型, 航空动力学报, 24(9), 2012(2009))
13 XU Renoing,LI Shulan, WANG Kunqian, The effect of stress ratio P-da/dN-△K curve for 30CrMnSiNi2A steel, Engineering Mechanice, 22(2), 6(2005)
13 (徐人平, 李淑兰, 王坤茜, 应力比对30CrMnSiNi2A钢P-da/dN-△K曲线影响研究, 工程力学, 22(2), 6(2005))
14 OUYANG Hui,LIU Junzhou, SU Xiaoyan, the effect of stress ratio on fatigue crack growth rates, Acta Mechanica Solida Sinica, (4), 577(1984)
14 (欧阳辉, 刘俊洲, 苏小燕, 应力比R对疲劳裂纹扩展速率的影响, 固体力学学报, (4), 577(1984))
15 GAO Zhengtong, XIONG Junjian, Fatigue Reliability, 1st edition, (Beijing, Beihang University Press, 2000)p.293
15 (高镇同, 熊俊江, 疲劳可靠性, 第一版, (北京, 北京航空航天大学出版社, 2000)p.293)
[1] 杨栋天, 熊良银, 廖洪彬, 刘实. 基于热力学模拟计算的CLF-1钢改良设计[J]. 材料研究学报, 2023, 37(8): 590-602.
[2] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.
[3] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[4] 孙艺, 韩同伟, 操淑敏, 骆梦雨. 氟化五边形石墨烯的拉伸性能[J]. 材料研究学报, 2022, 36(2): 147-151.
[5] 谢明玲, 张广安, 史鑫, 谭稀, 高晓平, 宋玉哲. Ti掺杂MoS2薄膜的抗氧化性和电学性能[J]. 材料研究学报, 2021, 35(1): 59-64.
[6] 岳颗, 刘建荣, 杨锐, 王清江. Ti65合金的初级蠕变和稳态蠕变[J]. 材料研究学报, 2020, 34(2): 151-160.
[7] 鲁效庆,张全德,魏淑贤. A-π-D-π-A型吲哚类染料敏化剂的光电特性[J]. 材料研究学报, 2020, 34(1): 50-56.
[8] 宋竹满,李瑞,钱苗,史文博,钱科,马恒,陈庆吟,张广平. 基于8.8级螺栓疲劳性能的预紧力优化[J]. 材料研究学报, 2019, 33(8): 629-634.
[9] 李学雄,徐东生,杨锐. 钛合金双态组织高温拉伸行为的晶体塑性有限元研究[J]. 材料研究学报, 2019, 33(4): 241-253.
[10] 赵庆云,程思锐,黄宏. 1240 MPaTi-38644高锁螺栓的拉伸疲劳增寿机理[J]. 材料研究学报, 2019, 33(10): 735-741.
[11] 王少杰, 韩靖, 曾伟, 张雪梅, 赵君文, 戴光泽. 低温对ER8车轮钢力学性能的影响[J]. 材料研究学报, 2018, 32(6): 401-408.
[12] 刘庆生, 曾少军, 张丹城. 基于细观结构的阴极炭块钠膨胀应力数值分析及实验验证[J]. 材料研究学报, 2017, 31(9): 703-713.
[13] 马志军, 莽昌烨, 王俊策, 翁兴媛, 司力玮, 关智浩. 三种金属离子掺杂对纳米镍锌铁氧体吸波性能的影响[J]. 材料研究学报, 2017, 31(12): 909-917.
[14] 黄莉. 石蜡/水相变乳液的稳定性能和储能容量[J]. 材料研究学报, 2017, 31(10): 789-795.
[15] 黄丰,聂铭,林介东,华旭,陈国锋,周忠娇. 涂覆热障涂层构件的热梯度机械疲劳行为研究[J]. 材料研究学报, 2017, 31(1): 9-17.