Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (4): 308-313    DOI: 10.11901/1005.3093.2014.020
  本期目录 | 过刊浏览 |
双金属复合板材辊式矫直的数值模型*
王效岗(),李乐毅,王海澜,周存龙,黄庆学
太原科技大学冶金设备设计理论与技术省部共建国家重点实验室培育基地 太原 030024
Numerical Modeling for Roller Leveling Process of Bimetal-Plate
Xiaogang WANG(),Yueyi LI,Hailan WANG,Cunlong ZHOU,Qinxue HUANG
Shanxi Provincial Key Laboratory of Metallurgical Device Design Theory and Technology (State Key Laboratory Cultivation Base of Province-Ministry Co-Construct), Taiyuan University of Science and Technology, Taiyuan 030024
引用本文:

王效岗,李乐毅,王海澜,周存龙,黄庆学. 双金属复合板材辊式矫直的数值模型*[J]. 材料研究学报, 2014, 28(4): 308-313.
Xiaogang WANG, Yueyi LI, Hailan WANG, Cunlong ZHOU, Qinxue HUANG. Numerical Modeling for Roller Leveling Process of Bimetal-Plate[J]. Chinese Journal of Materials Research, 2014, 28(4): 308-313.

全文: PDF(1857 KB)   HTML
摘要: 

将弯曲分层矫直数值计算和实验验证相结合, 研究了双金属复合板材辊式矫直过程中的连续弯曲变形和力能参数。结果表明, 使用弯曲分层矫直计算模型是计算双金属复合板材矫直过程的有效方法, 分层算法的结果与实验数据有较好的一致性; 双金属复合板材弯曲应变的中性层与几何中间层产生偏离, 中性层位置随弯曲程度和材料比例而变化; 同时, 由于材料的力学性能不同, 在同一弯曲单元内各组元材料的塑性层比例也不同; 计算模型所给出的在双金属复合板材矫直过程中应力应变的演化, 与单一材料有明显的不同; 在不考虑原始曲率的前提下, 矫后残余应力随着弯曲单元的增加而减小。

关键词 材料科学基础学科矫直模型数值计算中性层残余应力    
Abstract

The bending stress and strain of bimetal plate during roller leveling process are studied by means of both numerical analysis and experimental verification. The results show that the calculated results are agreed fairly well with the measured data. There is a deviation between the positions of the neutral layer of strain and the geometric middle of the plate thickness. At the same time this deviation changes with the ratio of the thickness of the two metallic materials, as well as the bending degree of bimetal plate. Furthermore, the percentage of the plastic layer for each of the two metallic materials in one bent unit is different owing to the difference of their mechanical property, while the roller leveling induced residual stress decreases with the increasing number of bent units.

Key wordsfoundational discipline in materials science    leveling model    numerical calculation    neutral layer    residual stress
收稿日期: 2014-01-09     
基金资助:*国家青年科学基金51104101, 973计划前期研究专项2012CB722801,山西省基础研究计划项目2011021019-4 以及山西省回国留学人员科研项目2013-099 资助。
图1  双金属复合板材(阴影-覆盖层, 白色-基层)
图2  双金属复合板材弯曲变形和弯曲单元的分层
图3  算法采用的材料应力应变模型
Material Yield strength, σ s /MPa Ultimate strength, σ b /MPa Modulus of elasticity, E/GPa Elongation, δ/%
Q245R 245 460 21.4 25
06Cr13 345 490 22.0 24
表1  试验材料组元的力学性能
图4  截面内应力应变的分布
图5  截面内应力应变的分布
图6  实验用试样
Material Intermesh (in)/mm Intermesh (out)/mm Calculated force/kN Measured force/kN
A 0.50 0.30 106 /
B 0.50 0.30 124 /
C 0.50 0.30 115 119
D 0.50 0.30 112 108
A 0.85 0.30 123 /
B 0.85 0.30 151 /
C 0.85 0.30 137 134
D 0.85 0.30 133 128
A 1.20 0.30 135 /
B 1.20 0.30 175 /
C 1.20 0.30 155 150
D 1.20 0.30 150 147
表2  矫直力的实验数据与理论计算
1 LU Yun, ZHU Shijie, MA Mintu, Advanced Composites(Beijing, Mechanical Industry Press, 2003)P.229
1 (鲁云, 朱世杰, 马敏图, 先进复合材料(北京: 机械工业出版社, 2003)P.229)
2 YU Jiuming,XIAO Yunzhen, WANG Qunjiao, FANG Xiaoying, CUI Guangmo, Metal layered composite technology and new progress, Journal of Materials Research, 14(1), 12(2000)
2 (于九明, 孝云祯, 王群骄, 方晓英, 崔光沫, 金属层状复合技术及其新进展, 材料研究学报, 14(1), 12(2000))
3 ZHAO Luyu,HUANG Weixue, Application in explosion of stainless steel composite plate and petrochemical equipment, Development and Application of Materials, 15(1), 24(2000)
3 (赵路遇, 黄维学, 爆炸不锈钢复合板及其在石化设备上的应用, 材料开发与应, 15(1), 24(2000))
4 FU Hua, XU Hong, Large Diameter 06Cr13 Martensitic Stainless Composite Plate of The Pressure Vessel Manufacturing, Electric Welding Machine, 40(2), 40(2010)
4 (傅 华, 徐 洪, 大直径06Cr13马氏体不锈复合板压力容器的制造, 电焊机, 40(2), 40(2010))
4 Pagounis E,Lindroos V K, Processing and properties of particu-late reinforced steel matrix composites, Materials Science and Engineering, (A246), 221(1998)
5 YU Tianchun, Metal Matrix Composites(Beijing, Metallurgical Industry Press, 1995)P.105
5 (于田春, 金属基复合材料(北京: 冶金工业出版社, 1995)P.105)
6 S. Belyaev, V. Rubanik, N. Resnina, V. Rubanik, V. Borisov, I. Lomakin,Functional properties of bimetal composite of “stainless steel–TiNi alloy” produced by explosion welding, Physics Procedia, 10, 52(2010)
7 T. Z. Bulaqinse(Ed.), LI Fuqin, WU Baiqing (Trans.), The Explosion Welding, Forming and Repression (Benjing, Mechanical Industry Press, 1988)P.203
7 (T. Z. Bulaqinse著, 李富勒, 吴柏青译, 爆炸焊接、成形与压制(北京: 机械工业出版社, 1988)P.203)
8 SUN Deqin,XIE Jianxin, WU Chunjing, Forming Technology and Development Trend of Composite Board, Metal Forming Process, 21(2), 19(2003)
8 (孙德勤, 谢建新, 吴春京, 复合板的成形技术与发展趋势, 金属成型工艺, 21(2), 19(2003))
9 ZU Guoyin,YU Jiuming, WEN Jinglin, Brazing - hot rolling composite process preparation of stainless steel/carbon steel composite plate, Journal of Welding, 28(5), 25(2007)
9 (祖国胤, 于九明, 温景林, 钎焊-热轧复合工艺制备不锈钢/碳钢复合板, 焊接学报, 28(5), 25(2007))
10 SUN Hongwu,CHEN Yan, CHENG Ming, ZHANG Shihong, BAO Chunling, Progresses in the accumulative roll-bonding of clad bimetals, Journal of Materials A, 25(10), 7(2011)
10 (宋鸿武, 陈 岩, 程 明, 张士宏, 包春玲, 异种金属层状复合材料累积叠轧工艺的研究进展, 材料导报A, 25(10), 7(2011)
11 Grimm W,Korth J, Kohler W, Ilsenburg heavy-plate mill:Modernisation of the mill stand area and of the hot-plate leveller, Iron Steel Review, 51(9), 11(2008)
12 Philippaus V,Mailllard S, Modern levelers for advanced plate grade, Iron Steel Review, 52(10), 144(2009)
13 Wilhelm Guerlcke,Material model descreibling cyclic elastic-plastic deformation of roller leveling and straightening processes, Steel Research Int, 80(4), 281(2009)
14 B. Dratz, V. Nalewaj, J. Bikardl, Y. Chastel,Testing and modeling the behaviour of steel sheets for roll leveling applications, Int. J. Mater. Form, 2, 519(2009)
15 B. A. Behrens, T. El Nadi, R. Krimm,Development of an analytical 3D-simulation model of the levelling process, Journal of Materials Processing Technology, 211, 1060(2011)
16 Z. F. Liu, Y. Q. Wang, X. C. Yan,A new model for the plate leveling process based on curvature integration method, Internation Journal of Mechanical Sciences, 54, 213(2012)
[1] 杨栋天, 熊良银, 廖洪彬, 刘实. 基于热力学模拟计算的CLF-1钢改良设计[J]. 材料研究学报, 2023, 37(8): 590-602.
[2] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[3] 孙艺, 韩同伟, 操淑敏, 骆梦雨. 氟化五边形石墨烯的拉伸性能[J]. 材料研究学报, 2022, 36(2): 147-151.
[4] 谢明玲, 张广安, 史鑫, 谭稀, 高晓平, 宋玉哲. Ti掺杂MoS2薄膜的抗氧化性和电学性能[J]. 材料研究学报, 2021, 35(1): 59-64.
[5] 岳颗, 刘建荣, 杨锐, 王清江. Ti65合金的初级蠕变和稳态蠕变[J]. 材料研究学报, 2020, 34(2): 151-160.
[6] 鲁效庆,张全德,魏淑贤. A-π-D-π-A型吲哚类染料敏化剂的光电特性[J]. 材料研究学报, 2020, 34(1): 50-56.
[7] 马文静,陈志国,李鸿娟,袁珍贵,郑子樵. 新型热处理调控Al-Cu-Mg合金残余应力的工艺和机理[J]. 材料研究学报, 2019, 33(6): 435-442.
[8] 李学雄,徐东生,杨锐. 钛合金双态组织高温拉伸行为的晶体塑性有限元研究[J]. 材料研究学报, 2019, 33(4): 241-253.
[9] 刘庆生, 曾少军, 张丹城. 基于细观结构的阴极炭块钠膨胀应力数值分析及实验验证[J]. 材料研究学报, 2017, 31(9): 703-713.
[10] 马志军, 莽昌烨, 王俊策, 翁兴媛, 司力玮, 关智浩. 三种金属离子掺杂对纳米镍锌铁氧体吸波性能的影响[J]. 材料研究学报, 2017, 31(12): 909-917.
[11] 黄莉. 石蜡/水相变乳液的稳定性能和储能容量[J]. 材料研究学报, 2017, 31(10): 789-795.
[12] 娄菊红, 杨延清. 基体性能对复合材料热残余应力的影响*[J]. 材料研究学报, 2016, 30(7): 503-508.
[13] 张志超, 王玉敏, 李玉芳, 柏春光. SiC纤维增强钛基复合材料残余应力的数值模拟[J]. 材料研究学报, 2016, 30(5): 355-364.
[14] 李桂荣,王芳芳,郑瑞,王宏明,黄超,薛飞,朱弋. 脉冲强磁场处理固态铝基复合材料的力学性能和强韧化机制*[J]. 材料研究学报, 2016, 30(10): 745-752.
[15] 朱良,王晶,李晓慧,锁红波,张亦良. 基于堆焊成形钛合金高周疲劳实验数据的R-S-N模型[J]. 材料研究学报, 2015, 29(9): 714-720.