Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (3): 197-203    DOI: 10.11901/1005.3093.2013.480
  本期目录 | 过刊浏览 |
三元复合胶凝体系中硅灰和粉煤灰反应程度的确定*
姚武(),吴梦雪,魏永起
同济大学先进土木工程材料教育部重点实验室 上海 201804
Determination of Reaction Degree of Silica Fume and Fly Ash in a Cement - silica fume - fly ash Ternary Cementitious System
Wu YAO(),Mengxue WU,Yongqi WEI
Key Laboratory of Advanced Civil Engineering Materials(Tongji University), Ministry of Education, Shanghai 201804
引用本文:

姚武,吴梦雪,魏永起. 三元复合胶凝体系中硅灰和粉煤灰反应程度的确定*[J]. 材料研究学报, 2014, 28(3): 197-203.
Wu YAO, Mengxue WU, Yongqi WEI. Determination of Reaction Degree of Silica Fume and Fly Ash in a Cement - silica fume - fly ash Ternary Cementitious System[J]. Chinese Journal of Materials Research, 2014, 28(3): 197-203.

全文: PDF(722 KB)   HTML
摘要: 

采用选择性溶解法和非蒸发水量法定量研究了不同龄期、不同掺量水泥-硅灰-粉煤灰三元复合胶凝体系中矿物掺合料的反应进程。用同细度同掺量的惰性石英粉替代粉煤灰以消除粉煤灰的稀释效应和异核成核效应, 得到三元复合胶凝体系中硅灰的反应程度; 根据三元复合胶凝体系中矿物掺合料的整体反应程度, 计算了粉煤灰的反应程度。结果表明, 硅灰的火山灰反应在复合胶凝体系水化1 d时就已经开始, 并呈现早期快而后期慢的特点; 而粉煤灰的火山灰效应, 在7 d以后才开始并加快。在三元复合胶凝体系中, 硅灰和粉煤灰的反应程度均随着粉煤灰掺量的提高而降低。

关键词 材料科学基础学科三元复合胶凝体系粉煤灰硅灰反应程度选择性溶解    
Abstract

The reaction processes of mineral admixtures in a cement-silica fume-fly ash ternary cementitious system aged for different time were quantitatively studied by means of selective dissolution and non-evaporative water content methods. To determine separately the degree of pozzolanic reaction for silica fume in the ternary system, fly ash was replaced by the inert quartz powder with the same fineness and same dosage in order to eliminate the dilution effect and heterogeneous nucleation effect. Then the reaction degree of fly ash can be calculated from the total reaction degree of all the admixtures in the system. The test results demonstrated that only 1 d after the beginning of the hydration, the pozzolanic reaction for silica fume already started, and the reaction exhibited a fast rate in the early stage but a slow one in the later stage. However, the same reaction with a rapidly increasing rate for fly ash just began only 7 d after the beginning of the hydration. In the ternary cementitious system, the hydration degrees for both silica fume and fly ash were reduced with the increasing fly ash content.

Key wordsfoundational discipline in materials science    ternary cementitious system    fly ash    silica fume    reaction degree    selective dissolution
收稿日期: 2013-07-10     
基金资助:* 国家重点基础研究计划2009CB62305 和上海市国际科技合作项目12230708700 资助。
作者简介:

本文联系人: 姚 武, 教授

Material Na2O MgO Al2O3 SiO2 P2O5 SO3 K2O CaO MnO Fe2O3 LOI
Silica fume 0.37 0.70 0.30 94.50 0.13 0.40 1.16 0.94 0.02 0.06 1.42
Fly ash 0.45 1.23 28.98 54.70 0.18 0.58 1.65 4.48 0.06 5.24 2.45
Cement clinker 0.61 0.92 5.48 23.10 0.07 0.48 0.76 64.80 0.08 3.15 0.55
表1  试验原材料的化学组成
图1  水泥、粉煤灰、硅灰和石英粉的粒度分布
Sample No. Cement Silica fume Fly ash Quartz Water
C 80 0 0 0 24
C-1SF 72 8 0 0 24
C-2FA 64 0 16 0 24
C-2Q 64 0 0 16 24
C-4FA 48 0 32 0 24
C-4Q 48 0 0 32 24
C-1SF-2FA 56 8 16 0 24
C-1SF-2Q 56 8 0 16 24
C-1SF-4FA 40 8 32 0 24
C-1SF-4Q 40 8 0 32 24
表2  试样的编号及配合比
Sample Residual content /% Sample Hydration degree /%
EDTA-AS SD-PA EDTA-AS SD-PA
Silica fume 98.0 94.7 C-1SF-1d 20.1 21.1
Fly ash 96.6 92.8 C-2FA-1d 4.6 6.1
Quartz 99.6 99.7 C-2Q-90d 0.7 0.9
Clinker 1.7 1.6
表3  EDTA-AS与SD-PA选择性溶解测试结果的对比
Raw material Mean( R ? ) S r CV/%
Clinker 1.7 0.3 0.4 24.0
Silica fume 98.0 0.5 0.7 0.7
Fly ash 96.6 1.0 1.4 1.5
Quartz 99.6 0.4 0.6 0.6
表4  原材料的选择性溶解不溶物含量
Sample No. 1 d 3 d 7 d 28 d
C 6.85 11.05 11.86 13.79
C-1SF 6.66 11.05 11.80 12.56
C-2FA 5.58 8.40 11.11 12.53
C-2Q 5.44 10.53 12.23 13.20
C-4FA 4.35 8.13 10.27 11.16
C-4Q 4.45 8.14 9.78 11.63
C-SF-2FA 5.79 9.10 10.11 11.57
C-SF-2Q 5.66 10.09 10.64 11.39
C-SF-4FA 4.07 7.67 8.15 9.51
C-SF-4Q 4.12 7.94 8.97 9.71
表5  不同龄期试样的非蒸发水量
图2  试样C、C-4FA及C-4Q中水泥水化程度
Age/d C-1SF C-2FA C-4FA C-1SF-2FA C-1SF-4FA
aSF aFA aFA aSF aFA aSF aFA
1 20.31 4.76 3.92 16.07 3.73 12.59 2.44
3 32.80 5.23 3.77 22.29 4.06 16.27 2.76
7 39.15 6.37 4.82 26.88 5.41 20.38 3.43
28 50.58 17.32 13.03 39.19 15.13 27.05 11.84
表6  三元复合胶凝体系中硅灰和粉煤灰的水化程度
图3  不同水化龄期时硅灰的反应程度
图4  不同水化龄期时粉煤灰的反应程度
1 J. B. Green, S. E. Manahan,Determination of acid-base and solubility behavior of lignite fly ash by selective dissolution in mineral acids, Analytical Chemistry, 50(14), 1975(1978)
2 S. Li, D. M. Roy, A. Kumar,Quantatative determination of pozzolanas in hydrated systems of cement or Ca(OH)2 with fly ash or silica fume, Cement and Concrete Research, 15(6), 1079(1985)
3 S. Ohsawa, K. Asaga, S. Goto, M. Daimon. Quantitative determination of fly ash in the hydrated fly ash - CaSO42H2O Ca(OH)2 system, Cement and Concrete Research, 15(2), 357(1985)
4 B. Suprenant, G. Papadopoulos,Selective dissolution of Portland-fly-ash cements, Journal of Materials in Civil Engineering, 3(1), 48(1991)
5 Y. M. Zhang, W. Sun, H. D. Yan,Hydration of high-volume fly ash cement pastes, Cement and Concrete Composites, 22(6), 445(2000)
6 L. Lam, Y. L. Wong, C. S. Poon,Degree of hydration and gel/space ratio of high-volume fly ash/cement systems, Cement and Concrete Research, 30(5), 747(2000)
7 H. M. Dyson, I. G. Richardson, A. R. Brough,A combined 29Si MAS NMR and selective dissolution technique for the quantitative evaluation of hydrated blast furnace slag cement blends, Journal of the American Ceramic Society, 90(2), 598(2007)
8 M. B. Haha, K. D. Weerdt, B. Lothenbach,Quantification of the degree of reaction of fly ash, Cement and Concrete Research, 40(11), 1620(2010)
9 Q. Zeng, K. Li, T. Fen-Chong, P. Dangla,Determination of cement hydration and pozzolanic reaction extents for fly-ash cement pastes, Construction and Building Materials, 27(1), 560(2012)
10 YAO Yumei,SHI Huisheng, SHI Tao, Measurement of degree of hydraulicity in high performance cement-coal gangue system, Cement,(9), 1(2006)
10 (姚玉梅, 施惠生, 施 韬, 高性能水泥-煤矸石体系水化反应程度的测定, 水泥, (9), 1(2006))
11 LIU Zhihui,SHAO Wei, LAN Xianghui, LU Chunhua, XU Zhongzi, Hydration degree of fly ash in blended cement-fly ash paste, Journal of Building Materials, 14(2), 169(2011)
11 (刘志辉, 邵 伟, 兰祥辉, 陆春华, 许仲梓, 水泥-粉煤灰复合浆体中粉煤灰的火山灰反应程度, 建筑材料学报, 14(2), 169(2011))
12 ZHENG Keren,SUN Wei, JIA Yantao, GUO Liping, Method to determine reaction degrees of constituents in hydrating ternary blends composed of BFS, FA and Portland cement, Journal of Southeast University(Natural Science Edition), 43(3), 361(2004)
12 (郑克仁, 孙 伟, 贾艳涛, 郭丽萍, 水泥-矿渣-粉煤灰体系中矿渣和粉煤灰反应程度测定方法, 东南大学学报(自然科学版), 43(3), 361(2004))
13 M. Cyr, P. Lawrence, E. Ringot,Efficiency of mineral admixtures in mortars: quantification of the physical and chemical effects of fine admixtures in relation with compressive strength, Cement and Concrete Research, 36(2), 264(2006)
14 QUAN Hao, HAN Yongzhi, Reference Materials and Its Applications(Beijing, Chinese Standard Press, 2003)p.72
14 (全 浩, 韩永志, 标准物质及其应用技术(北京, 中国标准出版社, 2003)p.72)
15 YAN Peiyu,ZHANG Qinghuan, Microstructural characteristics of complex binder paste containing active or inert mineral admixtures, Journal of the Chinese Ceramic Society, 34(12), 1491(2006)
15 (阎培渝, 张庆欢, 含有活性或惰性掺合料的复合胶凝材料硬化浆体的微观结构特征, 硅酸盐学报, 34(12), 1491(2006))
16 LI Xiang,A Ruhan, YAN Peiyu, Research on hydration degree of cement-fly ash complex binders, Journal of Building Materials, 13(5), 584(2010)
16 (李 响, 阿茹罕, 阎培渝, 水泥-粉煤灰复合胶凝材料水化程度的研究, 建筑材料学报, 13(5), 584(2010))
[1] 杨栋天, 熊良银, 廖洪彬, 刘实. 基于热力学模拟计算的CLF-1钢改良设计[J]. 材料研究学报, 2023, 37(8): 590-602.
[2] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[3] 孙艺, 韩同伟, 操淑敏, 骆梦雨. 氟化五边形石墨烯的拉伸性能[J]. 材料研究学报, 2022, 36(2): 147-151.
[4] 谢明玲, 张广安, 史鑫, 谭稀, 高晓平, 宋玉哲. Ti掺杂MoS2薄膜的抗氧化性和电学性能[J]. 材料研究学报, 2021, 35(1): 59-64.
[5] 岳颗, 刘建荣, 杨锐, 王清江. Ti65合金的初级蠕变和稳态蠕变[J]. 材料研究学报, 2020, 34(2): 151-160.
[6] 鲁效庆,张全德,魏淑贤. A-π-D-π-A型吲哚类染料敏化剂的光电特性[J]. 材料研究学报, 2020, 34(1): 50-56.
[7] 李学雄,徐东生,杨锐. 钛合金双态组织高温拉伸行为的晶体塑性有限元研究[J]. 材料研究学报, 2019, 33(4): 241-253.
[8] 郭晓潞, 孟凡杰. 水热合成粉煤灰基铝掺杂托贝莫来石的微观结构[J]. 材料研究学报, 2018, 32(7): 513-517.
[9] 刘庆生, 曾少军, 张丹城. 基于细观结构的阴极炭块钠膨胀应力数值分析及实验验证[J]. 材料研究学报, 2017, 31(9): 703-713.
[10] 郭晓潞,施惠生. 纳米改性WBP-CFA地聚合物的耐久性和孔结构[J]. 材料研究学报, 2017, 31(2): 110-116.
[11] 李苗苗,陈平,王辉,李建超. 环氧树脂复合泡沫塑料的制备及其拉压性能[J]. 材料研究学报, 2017, 31(2): 88-95.
[12] 马志军, 莽昌烨, 王俊策, 翁兴媛, 司力玮, 关智浩. 三种金属离子掺杂对纳米镍锌铁氧体吸波性能的影响[J]. 材料研究学报, 2017, 31(12): 909-917.
[13] 赵思勰, 晏华, 汪宏涛, 李云涛, 戴丰乐. 粉煤灰掺量对磷酸钾镁水泥水化动力学的影响[J]. 材料研究学报, 2017, 31(11): 839-846.
[14] 黄莉. 石蜡/水相变乳液的稳定性能和储能容量[J]. 材料研究学报, 2017, 31(10): 789-795.
[15] 郭晓潞, 施惠生, 夏明. 不同钙源对地聚合物反应机制的影响研究*[J]. 材料研究学报, 2016, 30(5): 348-354.