Please wait a minute...
材料研究学报  2008, Vol. 22 Issue (6): 561-571    
  专题评述 本期目录 | 过刊浏览 |
润湿性可控智能表面的研究进展
施政余;李梅;赵燕;路庆华
上海交通大学化学化工学院  上海 200240
Advance of smart surfaces with controllable wettability
 SHI Zhengyu; LI Mei; ZHAO Yan; LU Qianghua
School of Chemistry and Chemical Technology; Shanghai Jiao Tong University; Shanghai  200240
引用本文:

施政余 李梅 赵燕 路庆华. 润湿性可控智能表面的研究进展[J]. 材料研究学报, 2008, 22(6): 561-571.
, , , . Advance of smart surfaces with controllable wettability[J]. Chin J Mater Res, 2008, 22(6): 561-571.

全文: PDF(1391 KB)  
摘要: 

论述了表面润湿性的基本原理, 综述了可控润湿性智能表面研究的最新进展, 介绍了热化学法、电润湿法、光致表面化学反应法、溶剂法、pH法和多重响应法等调控表面润湿性的方法和机理, 展望了润湿性可控智能表面的发展方向.

关键词 材料科学基础学科 可控润湿性 综述 智能表面 接触角 温敏聚合物 光敏材料    
Abstract

Recent achievements in the construction of smart surfaces with controllable wettability are reviewed in this paper. The fundamental theories of wettability were introduced, techniques and their mechanisms used in controlling the wettability of surfaces including thermal chemistry, electrostatic, photo--induced surface chemistry, solvent, pH and multi--stimulation methods were elucidated. The possible prospect of smart surfaces with controllable wettability is also discussed.

Key wordsfoundational discipline in materials science    controllable wettability    reviews    smart surface    contact angle    temperature--sensitive polymer    photo--sensitive materials
收稿日期: 2008-01-30     
ZTFLH: 

O484

 
基金资助:

国家自然科学基金(No. 60577049)

1 A.Nakajima, K.Hashimoto, T.Watanabe, Recent studies on superhydrophobic films, Monatsh. Chem., 132, 31(2001)
2 X.Gao, L.Jiang, Water–repellent legs of water striders, Nature., 432, 36(2004)
3 T.H.Chen, Y.J.Chuang, C.C.Chieng, F.G.Tseng, A wettability switchable surface by microscale surface morphology change, J. Micromech. Microeng., 17, 489(2007)
4 S.L.Gras, T.Mahmud, G.Rosengarten, A.Mitchell, K.Kalantarzadeh, Intelligent control of surface hydrophobicity, Chem. Phys. Chem., 8, 2036(2007)
5 S.Minko, M.M ller, M.Motornov, Two level structured self–adaptive surfaces with reversibly tunable properties, J. Am. Chem. Soc., 125, 3896(2003)
6 M.S.Dhindsa, N.R.Smith, J.Heikenfeld, Reversible electrowetting of vertically aligned superhydrophobic carbon nanofibers, Langmuir., 22, 9030(2006)
7 X.Yu, Z.Wang, Y.Jiang, F.Shi, X.Zhang, Reversible pH– responsive surface: from superhydrophobicity to superhydrophilicity, Adv. Mater., 17, 1289(2005)
8 J.L.Zhang, J.Li, Y.C.Han, Superhydrophobic PTFE surfaces by extension, Macromol. Rapid. Commun., 25, 1105(2004)
9 J.L.Zhang, X.Y.Lu, W.H.Huang, Y.C.Han, Reversible superhydrophobicity to superhydrophilicity transition by extending and unloading an elastic polyamide Film, Macromol. Rapid. Commun., 26, 477(2005)
10 J.Lahann, S.Mitragotri, T.N.Tran, H.Kaido, J.Sundaram, I.S.Choi, Hoffer, G.A.Somorjai, R.Langer, A reversibly switching surface, Science., 299, 371(2003)
11 X.Wang, A.B.Kharitonov, E.Katz, I.Willner, Potential controlled molecular machinery of bipyridinium monolayer functionalized surfaces, Chem. Commun, 13, 1542(2003)
12 Y.Zhao, Q.Lu, D.Chen, Superhydrophobic modification of polyimide films based on gold–coated porous sliver nanostructures and self–assembled monolayers, Mater. Chem., 16, 4504(2006)
13 J.Xu, M.Li, Y.Zhao, Q.Lu, Control over the hydrophobic behavior of polystrene surface by annealing temperature based on capillary template wetting method, Colloids and surface A: physico Chem. Eng. Aspects., 302, 136(2007)
14 M.Li, J.Xu, Q.Lu, Creating superhydrophobic surface with flowery structure on nickel substrates through a wet– chemical–process, J. Mater. Chem., 17, 1(2007)
15 P.Mali, N.Bhattacharjee, P.C.Searson, Electrochemically programmed release of biomolecules and nanoparticles, Nano Lett., 6, 1250(2006)
16 H.Kaji, M.Hashimoto, M.Nishizawa, On demand patterning of protein matrixes inside a microfluidic device, Anal. Chem., 78, 5469(2006)
17 K.Ichimura, S.Oh, M.Nakagawa, Light–driven motion of liquids on a photoresponsive surface, Science., 288, 1624(2000)
18 Y.T.Cheng, D.E.Rodak, C.A.Wong, C.A.Hayden, Effects of micro– and nano– structures on the self–cleaning behaviour of lotus leaves, Nanotechnology., 17, 1359(2006)
19 M.Miwa, A.Nakajima, A.Fujishima, K.Hashimoto, T.Watanabe, Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces, Langmuir., 16(13), 5754(2000)
20 M.Marmur, The lotus effect: Superhydrophobicity and metastability, Langmuir., 20, 3517(2004)
21 C.G.L Furmidge, Studies at phase interfaces. I. The sliding of liquid drops on solid surfaces and a theory for spray retention, J. Colloid Sci., 17, 309(1962)
22 R.N.Wenzel, Resistance of solid surfaces to wetting by water, Ind. Eng. Chem., 28, 988(1936)
23 A.B.D.Cassie, S.Baxter, Wettability of porous surfaces, Trans. Faraday. Soc., 40, 546(1944)
24 J.Jopp, H.Grull, R.Yerushalmi Rozen, Wetting behavior of water droplets on hydrophobic microtextures of comparable size, Langmuir., 20, 10015(2004)
25 J.Bico, C.Tordeux, D.Qu′er′e, Wetting of textured surfaces, Colloids. Surf., 206, 41(2002)
26 X.Feng, L.Jiang, Design and creation of super– wetting/Antiwetting surface, Adv. Mater., 18, 3063(2006)
27 X.Yu, Z.Wang, Y.Jiang, F.Shi, X.Zhang, Reversible pH– responsive surface: from superhydrophobicity to superhydrophilicity, Adv. Mater., 17, 1289(2005)
28 R.Wang, K.Hashimoto, A.Fujishima, M.Chikuni, E.Kojima, A.Kitamura, M.Shimohigoshi, T.Watanabe, Light–induced amphiphilic surfaces, Nature., 388, 431(1997)
29 L.Feng, Y.Song, J.Zhai, B.Liu, J.Xu, L.Jiang, D.Zhu, Creation of a superhydrophobic surface from an amphiphilic polymer, Angew. Chem. Int. Ed., 42(7), 800(2003)
30 E.A.Vogler, Structure and reactivity of water at biomaterial surfaces, Adv. Colloid. Interface. Sci., 74, 69(1998)
31 J.Y.Chung, J.P.Youngbloodb, C.M.Stafford, Anisotropic wetting on tunable microwrinkled surfaces, Soft. Matter., 3, 1163(2007)
32 T.Sun, G.Wang, L.Feng, B.Liu, Y.Ma, L.Jiang, D.Zhu, Reversible switching between superhydro– philicity and superhydrophobicity, Angew. Chem. Int. Ed., 43, 357(2004)
33 T.Yakushiji, K.Sakai, A.Kikuchi, T.Aoyagi, Y.Sakurai, T.Okano, Graft architectural effects on thermoresponsive wettability changes of poly(N–isopropylacrylamide) modified surfaces, Langmuir., 14, 4657(1998)
34 Q.Fu, G.V.R.Rao, S.B.Basame, D.J.Keller, Reversible control of free energy and topography of nano–structured surfaces, J. Am. Chem. Soc., 126, 8904(2004)
35 S.Khongtong, G.S.Ferguson, Temperature actuated changes in wettability at elastomer/water interfaces, Langmuir., 20, 9992(2004)
36 S.Yokota, K.Matsuyama, T.Kitaoka, H.Wariishi, Thermally responsive wettability of self–assembled methylcellulose nanolayers, Applied Surface, Science., 253, 5149(2007)
37 N.Verplanck, E.Galopin, J.C.Camart, Reversible electrowetting on superhydrophobic silicon nanowires, Nano Lett., 7(3), 813(2007)
38 T.N.Krupenkin, J.A.Taylor, T.M.Schneider, S.Yang, From rolling ball to complete wetting: the dynamic tuning of liquids on nanostructured surfaces, Langmuir., 20, 3824(2004)
39 L.Xu, W.Chen, A.Mulchandani, Y.Yan, Reversible conversion of conducting polymer films from superhydrophobic to superhydrophilic, Angew. Chem. Int. Ed., 44, 6009(2005)
40 L.Robinson, A.Hentzell, N.D.Robinson, Electrochemical wettability switches gate aqueous liquids in microfluidic systems, Lab Chip., 6, 1277(2006)
41 X.Feng, J.Zhai, L.Jiang, The fabrication and switchable superhydrophobicity of TiO2 Nanorod films, Angew. Chem. Int. Ed., 44, 5115(2005)
42 N.Katsonisa, M.Lubomskaa, M.M.Pollarda, B.L.Feringaa, P.Rudolfa, Synthetic light–activated molecular switches and motors on surfaces, Progress in Surface Science., 82(7–8), 407(2007)
43 D.Dattilo, L.Armelao, G.Fois, G.Mistura, M.Maggini, Wetting properties of flat and porous silicon surfaces coated with a spiropyran, Langmuir., 23(26), 12945(2007)
44 A.Nayak, H.Liu, G.Belfort, An optically reversible switching membrane surface, Angew. Chem. Int. Ed., 45, 4094(2006)
45 I.Vlassiouk, C.D.Park, S.A.Vail, D.Gust, S.Smirnov, Control of nanopore wetting by a photochromic spiropyran: a light–controlled valve and electrical switch, Nano Lett., 6, 1013(2006)
46 N.Delorme, J.Bardeau, A.Bulou, F.Poncin–Epaillard, Langmuir., 21, 12278(2005)
47 W.Jiang, G.Wang, Y.He, X.Wang, Y.An, Y.Song, L.Jiang, Photoswitched wettability on an electrostatic self– assembly azobenzene monolayer, Chem. Commun., 28, 3550(2005)
48 H.S.Lim, J.T.Han, D.Kwak, M.Jin, K.Cho, Photoreversibly switchable superhydrophobic surface with erasable and rewritable pattern, J. Am. Chem. Soc., 128, 14458(2006)
49 H.Liu, L.Feng, J.Zhai, L.Jiang, D.Zhu, Reversible wettability of a chemical vapor deposition prepared ZnO film between superhydrophobicity and super–hydrophilicity, Langmuir., 20, 5659(2004)
50 Z.Zhou, F.Li, Q.Song, T.Yi, C.Huang, Reversible wettability switch of large area TiO2 films, Chem. Lett., 34, 1298(2005)
51 L.Huang, S.P.Lau, H.Y.Yang, E.S.P.Leong, S.F.Yu, Stable superhydrophobic surface via carbon nanotubes coated with a ZnO thin film, J. Phys. Chem., 109, 7746(2005)
52 X.Q.Meng, D.X.Zhao, J.Y.Zhang, D.Z.Shen, Y.M.Lu, L.Dong, Z.Y.Xiao, Y.C.Liu, X.W.Fan, Wettability conversion on ZnO nanowire arrays surface modified by oxygen plasma treatment and annealing, Chem. Phys. Lett., 413, 450(2005)
53 X.Feng, L.Feng, M.Jin, J.Zhai, L.Jiang, D.Zhu, Reversible superhydrophobicity to superhydrophilicity transition of aligned ZnO nanorod films, J. Am. Chem. Soc., 126, 62(2004)
54 S.Wang, X.Feng, J.Yao, L.Jiang, Controlling wettability and photochromism in a dual–responsive tungsten oxide film, Angew. Chem. Int.Ed., 45, 1264(2006)
55 H.S.Lim, D.Kwak, D.Y.Lee, S.G.Lee, UV–driven reversible switching of a roselike vanadium oxide Film between superhydrophobicity and superhydrophilicity, J. Am. Chem. Soc., 129, 4128(2007)
56 M.Motornov, S.Minko, K.Eichhorn, M.Nitschke, F.Simon, M.Stamm, Reversible tuning of wetting behavior of polymer surface with responsive polymer brushes, Langmuir., 19, 8077(2003)
57 M.C.LeMieux, D.Julthongpiput, K.N.Bergman, P.D Cuong, Ultrathin binary grafted polymer layers with switchable morphology, Langmuir., 20, 10046(2004)
58 C.Xu, B.B.Wayland, M.Fryd, K.I.Winey, R.J.Composto, pH–responsive nanostructures assembled from amphiphilic block copolymers, Macromolecules., 39, 6063(2006)
59 Y.G.Jiang, Z.Q.Wang, X.Yu, F.Shi, H.P.Xu, X.Zhang, Self–assembled monolayers of dendronthiols for electrodeposition of gold nanostructures, Langmuir., 21, 1986(2005)
60 A.Synytska, M.Stamm, Simple and fast method for the fabrication of switchable bicomponent micropatterned polymer surfaces, Langmuir., 23(9), 5205(2007)
61 Y.Zhu, L.Feng, F.Xia, J.Zhai, M.Wan, L.Jiang, Chemical dual–responsive wettability of superhydrophobic PANI– PAN coaxial nanofibers, Macromol. Rapid. Commun., 28, 1135(2007)
62 W.Yuan, G.Jiang, J.Wang, G.Wang, Y.Song, L.Jiang, Temperature/Light dual–responsive surface with tunable wettability created by modification with an azobenzene– containing copolymer, Macromolecules., 39, 1300(2006)
63 F.Xia, L.Feng, S.Wang, T.Sun, W.Song, W.Jiang, L.Jiang, Dual–responsive surfaces that switch between superhydrophilicity and superhydrophobicity, Adv. Mater., 18, 432(2006)

[1] 杨栋天, 熊良银, 廖洪彬, 刘实. 基于热力学模拟计算的CLF-1钢改良设计[J]. 材料研究学报, 2023, 37(8): 590-602.
[2] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[3] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[4] 孙艺, 韩同伟, 操淑敏, 骆梦雨. 氟化五边形石墨烯的拉伸性能[J]. 材料研究学报, 2022, 36(2): 147-151.
[5] 赵宁, 焦大, 朱艳坤, 刘德学, 刘增乾, 张哲峰. 天然铠甲高效防护的材料学机理[J]. 材料研究学报, 2022, 36(1): 1-7.
[6] 彭浩平, 席世亨, 崔德荣, 刘亚, 邓嵩, 苏旭平, 阮睿文. Mn对熔融Zn-Mn合金与X80钢润湿行为的影响[J]. 材料研究学报, 2021, 35(10): 785-794.
[7] 谢明玲, 张广安, 史鑫, 谭稀, 高晓平, 宋玉哲. Ti掺杂MoS2薄膜的抗氧化性和电学性能[J]. 材料研究学报, 2021, 35(1): 59-64.
[8] 岳颗, 刘建荣, 杨锐, 王清江. Ti65合金的初级蠕变和稳态蠕变[J]. 材料研究学报, 2020, 34(2): 151-160.
[9] 鲁效庆,张全德,魏淑贤. A-π-D-π-A型吲哚类染料敏化剂的光电特性[J]. 材料研究学报, 2020, 34(1): 50-56.
[10] 李学雄,徐东生,杨锐. 钛合金双态组织高温拉伸行为的晶体塑性有限元研究[J]. 材料研究学报, 2019, 33(4): 241-253.
[11] 刘庆生, 曾少军, 张丹城. 基于细观结构的阴极炭块钠膨胀应力数值分析及实验验证[J]. 材料研究学报, 2017, 31(9): 703-713.
[12] 马志军, 莽昌烨, 王俊策, 翁兴媛, 司力玮, 关智浩. 三种金属离子掺杂对纳米镍锌铁氧体吸波性能的影响[J]. 材料研究学报, 2017, 31(12): 909-917.
[13] 黄莉. 石蜡/水相变乳液的稳定性能和储能容量[J]. 材料研究学报, 2017, 31(10): 789-795.
[14] 朱良,王晶,李晓慧,锁红波,张亦良. 基于堆焊成形钛合金高周疲劳实验数据的R-S-N模型[J]. 材料研究学报, 2015, 29(9): 714-720.
[15] 段炼,邱勇. 有机发光材料与器件研究进展[J]. 材料研究学报, 2015, 29(5): 321-336.