|
|
NH2-UiO-66/BiOBr异质结光催化剂的制备及其对氧氟沙星的降解性能 |
任学昌( ), 庞绪闯, 芦泽瑞, 陈泓锦, 俱鸿斌, 张官国, 李忠山 |
兰州交通大学环境与市政工程学院 兰州 730070 |
|
Preparation of NH2-UiO-66/BiOBr Heterojunction Photocatalyst and Its Degradation Performance for Ofloxacin |
REN Xuechang( ), PANG Xuchuang, LU Zerui, CHEN Hongjin, JU Hongbin, ZHANG Guanguo, LI Zhongshan |
School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China |
引用本文:
任学昌, 庞绪闯, 芦泽瑞, 陈泓锦, 俱鸿斌, 张官国, 李忠山. NH2-UiO-66/BiOBr异质结光催化剂的制备及其对氧氟沙星的降解性能[J]. 材料研究学报, 2025, 39(10): 777-790.
Xuechang REN,
Xuchuang PANG,
Zerui LU,
Hongjin CHEN,
Hongbin JU,
Guanguo ZHANG,
Zhongshan LI.
Preparation of NH2-UiO-66/BiOBr Heterojunction Photocatalyst and Its Degradation Performance for Ofloxacin[J]. Chinese Journal of Materials Research, 2025, 39(10): 777-790.
[1] |
Yang J M, Tian S F, Song Z, et al. Recent advances in sorption-based photocatalytic materials for the degradation of antibiotics [J]. Coord. Chem. Rev., 2025, 523: 216257
|
[2] |
Liu L, Sun Z, Feng J J, et al. Potential of solar photodegradation of antibiotics in shallow ditches: Kinetics, the role of dissolved organic matter and prediction models [J]. Sci. Total Environ., 2024, 955: 176725
|
[3] |
Jia W L, Gao F Z, Song C, et al. Swine wastewater co-exposed with veterinary antibiotics enhanced the antibiotic resistance of endophytes in radish (Raphanus sativus L.) [J]. Environ. Pollut., 2024, 362: 125040
|
[4] |
Dhiman N. Continuous flow column adsorption and desorption for the study of interaction of fluoroquinolone antibiotic ofloxacin hydrochloride with ZnO and CuO nanometal oxides in aqueous solution: (Continuous column adsorption desorption) [J]. Waste Manage. Bull., 2024, 2(3): 43
|
[5] |
Liu J W, Shi J, Deng H P. Fe-O-Bi efficient electron transfer channels and photo-Fenton synergy in S-scheme heterojunctions: insights into interfacial interactions and ofloxacin degradation [J]. Green Energy Environ., 2025, 10: 1503
|
[6] |
Su R D, Zhu Y F, Gao B Y, et al. Progress on mechanism and efficacy of heterogeneous photocatalysis coupled oxidant activation as an advanced oxidation process for water decontamination [J]. Water Res., 2024, 251: 121119
|
[7] |
Zha Y, He X Y, Wang Y D, et al. Visible-light-response Fe-doped BiOCl microspheres with efficient photocatalysis-Fenton degradation of antibiotics [J]. J. Water Process. Eng., 2024, 67: 106225
|
[8] |
Zhu C Z, Hou J K, Wang X H, et al. Optimizing ligand-to-metal charge transfer in metal-organic frameworks to enhance photocatalytic performance [J]. Chem. Eng. J., 2024, 499: 156527
|
[9] |
Yusuf M, Kurzina I, Voronova G, et al. Trends in the energy and environmental applications of metal-organic framework-based materials [J]. Energy Adv., 2024, 3(9): 2079
|
[10] |
Yao Q, Li S Q, Ban J F, et al. Functionalized Zr-MOFs for Enhancing flame retardancy and smoke suppression performance on TPU [J]. ChemistrySelect, 2024, 9(23): e202401227
|
[11] |
Yu C, Zhang X J, Song C X, et al. Development of Ce-doped NH2-UiO-66(Zr) photocatalysts for efficient CO2 reduction in an aqueous system [J]. Chem. Eng. J., 2024, 499: 156088
|
[12] |
Hegazy S, Ghannami A, Dos Reis G S, et al. Activation and Zr precursor influence on UiO-66-NH2 composites for efficient cationic and anionic dye removal [J]. Chem. Eng. Sci., 2025, 302: 120785
|
[13] |
Bui T M N, Vo T K, Phuong N H Y, et al. Fe(III)-incorporated UiO-66(Zr)-NH2 frameworks: Microwave-assisted scalable production and their enhanced photo-Fenton degradation catalytic activities [J]. Sep. Purif. Technol., 2025, 355: 129723
|
[14] |
Fan W J, Chang H, Zheng X J, et al. Elaborate construction of a MOF-derived novel morphology Z-scheme ZnO/ZnCdS heterojunction for enhancing photocatalytic H2 evolution and tetracycline degradation [J]. Sep. Purif. Technol., 2025, 357: 130068
|
[15] |
Xu X M, Xi Z S, Zhao D F, et al. Regulating electron transfer between valence-variable cuprum and cerium sites within bimetallic metal-organic framework towards enhanced catalytic hydrogenation performance [J]. J. Colloid Interface Sci., 2025, 679: 1159
|
[16] |
Diaz N O, Rodríguez C A, Durán-Álvarez J C, et al. A theoretical and experimental approach for photocatalytic degradation of caffeic acid using BiOBr microspheres [J]. Mater. Sci. Eng., 2021, 273B: 115432
|
[17] |
Imam S S, Adnan R, Kaus N H M. The photocatalytic potential of BiOBr for wastewater treatment: A mini-review [J]. J. Environ. Chem. Eng., 2021, 9(4): 105404
|
[18] |
Meng L Y, Qu Y, Jing L Q. Recent advances in BiOBr-based photocatalysts for environmental remediation [J]. Chin. Chem. Lett., 2021, 32(11): 3265
|
[19] |
Song W D, Zhao J H, Xie X H, et al. Novel BiOBr by compositing low-cost biochar for efficient ciprofloxacin removal: the synergy of adsorption and photocatalysis on the degradation kinetics and mechanism insight [J]. RSC Adv., 2021, 11(25): 15369
|
[20] |
Guo Y X, Wen H, Zhong T, et al. Core-shell-like BiOBr@BiOBr homojunction for enhanced photocatalysis [J]. Colloids Surf., 2022, 644A: 128829
|
[21] |
Jiang H L, Wang Q, Chen P G, et al. Photocatalytic degradation of tetracycline by using a regenerable (Bi) BiOBr/rGO composite [J]. J. Cleaner Prod., 2022, 339: 130771
|
[22] |
Gao K X, Hou L A, An X Q, et al. BiOBr/MXene/gC3N4 Z-scheme heterostructure photocatalysts mediated by oxygen vacancies and MXene quantum dots for tetracycline degradation: Process, mechanism and toxicity analysis [J]. Appl. Catal., 2023, 323B: 122150
|
[23] |
Pan Y, Yuan X Z, Jiang L B, et al. Stable self-assembly AgI/UiO-66(NH2) heterojunction as efficient visible-light responsive photocatalyst for tetracycline degradation and mechanism insight [J]. Chem. Eng. J., 2020, 384: 123310
|
[24] |
Ghorbani M, Nazar A R S, Frahadian M, et al. Fabrication of novel ZnO@BiOBr/UiO-66-NH2 core-shell heterojunction for improved tetracycline degradation [J]. Appl. Surf. Sci., 2023, 612: 155819
|
[25] |
Yang Z C, Li J, Cheng F X, et al. BiOBr/protonated graphitic C3N4 heterojunctions: Intimate interfaces by electrostatic interaction and enhanced photocatalytic activity [J]. J. Alloy. Compd., 2015, 634: 215
|
[26] |
Chen Q, He Q Q, Lv M M, et al. Selective adsorption of cationic dyes by UiO-66-NH2 [J]. Appl. Surf. Sci., 2015, 327: 77
|
[27] |
Fang X, Wu S B, Wu Y H, et al. High-efficiency adsorption of norfloxacin using octahedral UIO-66-NH2 nanomaterials: Dynamics, thermodynamics, and mechanisms [J]. Appl. Surf. Sci., 2020, 518: 146226
|
[28] |
Chankhanittha T, Johnson B, Bushby R J, et al. One-pot hydrothermal synthesis of g-C3N4/BiOBr/Bi2MoO6 as a Z-scheme heterojunction for efficient photocatalytic degradation of ciprofloxacin (CIP) antibiotic and Rhodamine B (RhB) dye [J]. J. Alloy. Compd., 2024, 1008: 176764
|
[29] |
Zhang R, Chen Z Y, Li Y, et al. A novel visible-light-induced double Z-scheme photocatalytic system: NH2-UiO-66/BiOBr/Bi2S3 for degradation of tetracycline hydrochloride and rhodamine B [J]. Colloids Surf., 2022, 649A: 129350
|
[30] |
Xu J M, Guo H L, Song J B, et al. Synthesis of NH2-UiO-66/Bi4O5I2 heterojunction for high tetracycline reduction under visible light [J]. Mater. Sci. Semicond. Process., 2024, 181: 108636
|
[31] |
Miao X S, Sun JW, Ma F, et al. Construction of Type-II Zn-SnO2/BiOBr heterojunctions with dual-oxygen vacancies for enhanced photocatalytic degradation [J]. Opt. Mater., 2024, 157: 116295
|
[32] |
Liu L, Li Y H, Wang K, et al. A novel persulfate activation strategy by double Z-scheme Bi2O3/CuBi2O4/BiOBr heterojunction: Non-radical dominated pathway for levofloxacin degradation [J]. J. Environ. Chem. Eng., 2024, 12(6): 114139
|
[33] |
Yang C D, Feng S, Ma C C, et al. Bi2Sn2O7/UiO-66-NH2 heterojunction photocatalyst simultaneously adsorbed and photodegraded tetracycline [J]. J. Environ. Chem. Eng., 2023, 11(3): 109664
|
[34] |
Wang F, He T, Gao Y N, et al. Z-scheme heterojunction Bi2MoO6/NH2-UiO-66(Zr/Ce) for efficient photocatalytic degradation of oxytetracycline: Pathways and mechanism [J]. Sep. Purif. Technol., 2023, 325: 124596
|
[35] |
Su Q, Li J, Wang B, et al. Direct Z-scheme Bi2MoO6/UiO-66-NH2 heterojunctions for enhanced photocatalytic degradation of ofloxacin and ciprofloxacin under visible light [J]. Appl. Catal., 2022, 318B: 121820
|
[36] |
Yuan Y X, Liao Q L, Zhao T X. Synthesis of UiO-66-NH2@PILs core-shell composites for CO2 conversion into cyclic carbonates via synergistic catalysis under solvent- and additive-free conditions [J]. Colloids Surf., 2025, 704A: 135492
|
[37] |
Landi S, Segundo I R, Freitas E, et al. Use and misuse of the Kubelka-Munk function to obtain the band gap energy from diffuse reflectance measurements [J]. Solid State Commun., 2022, 341: 114573
|
[38] |
Banyal R, Sonu S, Soni V, et al. Synergetic photocatalytic degradation of the tetracycline antibiotic over S-scheme based BiOBr/CuInS2/WO3 ternary heterojunction photocatalyst [J]. Solid State Sci., 2024, 157: 107700
|
[39] |
Zhu P F, Cao H Y, Yang H, et al. One-pot synthesis of Ni(Ⅱ)-doped UiO-66-NH2 for enhanced photocatalytic CO2 reduction to CO with efficient charge transfer [J]. Appl. Surf. Sci., 2024, 652: 159348
|
[40] |
Li N, Hua J, Chen F Y, et al. A novel 0D/3D Z-Scheme heterojunction ZnS/MIL-88(A) with significantly boosted photocatalytic activity toward tetracycline [J]. J. Phys. Chem. Solids, 2025, 196: 112372
|
[41] |
Tan C, Li Y Y, Wang H H, et al. Preparation of g-C3N4/Ag/TiO2 NTs and photocatalytic degradation of ceftazidine [J]. Chin. J. Mater. Res., 2022, 36(5): 392
|
[41] |
谭 冲, 李媛媛, 王欢欢 等. g-C3N4/Ag/TiO2NTs的制备及其对西维因的光催化降解 [J]. 材料研究学报, 2022, 36(5): 392
|
[42] |
Chen X Y, Yao J J, Xia B, et al. Influence of pH and DO on the ofloxacin degradation in water by UVA-LED/TiO2 nanotube arrays photocatalytic fuel cell: mechanism, ROSs contribution and power generation [J]. J. Hazard. Mater., 2020, 383: 121220
|
[43] |
Padhan P, Sethy A, Behera P K. Host-guest interaction between Ofloxacin-β-Cyclodextrin complexes in acidic and neutral pH: A fluorescence quenching study [J]. J. Photochem. Photobiol., 2017, 337: 165
|
[44] |
Qiang Z M, Adams C. Potentiometric determination of acid dissociation constants (pKa) for human and veterinary antibiotics [J]. Water Res., 2004, 38(12): 2874
|
[45] |
Wei X X, Chen J W, Xie Q, et al. Distinct photolytic mechanisms and products for different dissociation species of ciprofloxacin [J]. Environ. Sci. Technol., 2013, 47(9): 4284
|
[46] |
Xia B. Study on the influence of pH and DO inphotocatalytic fuel cell degrading ofloxacin [D]. Chongqing: Chongqing University, 2018
|
[46] |
夏 彬. pH和DO对光催化燃料电池降解氧氟沙星影响研究 [D]. 重庆: 重庆大学, 2018
|
[47] |
Luo J J, Wu L S, Liu D, et al. Preparation of S-scheme heterojunction photocatalyst Y2O3/BiOCl and visible light degradation of ofloxacin: Photocatalytic mechanism, DFT calculation, degradation pathway, and toxicity evaluation [J]. J. Alloy. Compd., , 2025, 1010: 177888
|
[48] |
Yang Y, Ye J, Zhai Y, et al. ZIF-67-derived monolithic bimetallic sulfides as efficient persulfate activators for the degradation of ofloxacin [J]. Surf. Interfaces, 2024, 51: 104713
|
[49] |
Wei Y Q, Liu C Y, Li X X, et al. Construction of S-scheme BiOCl/Bi24O31Cl10 heterojunction by thermally induced in-situ phase transition strategy for photocatalytic degradation of ciprofloxacin [J]. J. Water Process. Eng., 2025, 69: 106795
|
[50] |
Luo J M, Bo S F, Qin Y N, et al. Transforming goat manure into surface-loaded cobalt/biochar as PMS activator for highly efficient ciprofloxacin degradation [J]. Chem. Eng. J., 2020, 395: 125063
|
[51] |
Zhang Q Y, Sun X Q, Dang Y, et al. A novel electrochemically enhanced homogeneous PMS-heterogeneous CoFe2O4 synergistic catalysis for the efficient removal of levofloxacin [J]. J. Hazard. Mater., 2022, 424: 127651
|
[52] |
Huong V H, Nguyen V C, Pham K P, et al. Construction dual active sites on SnO2 via Fe doping for effective ciprofloxacin photodegradation [J]. J. Alloy. Compd., 2024, 1005: 176020
|
[53] |
Zhang Y, Zhou J B, Feng Q Q, et al. Visible light photocatalytic degradation of MB using UiO-66/g-C3N4 heterojunction nanocatalyst [J]. Chemosphere, 2018, 212: 523
|
[54] |
Yang Z F, Xia X N, Shao L H, et al. Efficient photocatalytic degradation of tetracycline under visible light by Z-scheme Ag3PO4/mixed-valence MIL-88A(Fe) heterojunctions: Mechanism insight, degradation pathways and DFT calculation [J]. Chem. Eng. J., 2021, 410: 128454
|
[55] |
Qi X M, Wu Q, Wang X J, et al. Design of UiO-66@BiOIO3 heterostructural composites with remarkable boosted photocatalytic activities in removing diverse industrial pollutants [J]. J. Phys. Chem. Solids, 2021, 151: 109903
|
[56] |
Piao C, Chen L, Liu Z Y, et al. Construction of solar light-driven dual Z-scheme Bi2MoO6/Bi2WO6\AgI\Ag photocatalyst for enhanced simultaneous degradation and conversion of nitrogenous organic pollutants [J]. Sep. Purif. Technol., 2021, 274: 119140
|
[57] |
Mengting Z, Duan L, Zhao Y, et al. Fabrication of the flower-like Z-scheme heterojunction photocatalyst Bi-BiOI/UiO 66 for enhanced photodegradation of acetaminophen in simulated wastewater [J]. J. Environ. Manage., 2024, 354: 120325
|
[58] |
Huang W G, Wang X Z, Zhang W T, et al. Intraligand charge transfer boosts visible-light-driven generation of singlet oxygen by metal-organic frameworks [J]. Appl. Catal., 2020, 273B: 119087
|
[59] |
Wang T Y, Zhao C, Meng L H, et al. In-situ-construction of BiOI/UiO-66 heterostructure via nanoplate-on-octahedron: A novel p-n heterojunction photocatalyst for efficient sulfadiazine elimination [J]. Chem. Eng. J., 2023, 451: 138624
|
[60] |
Ren J W, Lv S, Wang S Q, et al. Construction of efficient g-C3N4/NH2-UiO-66 (Zr) heterojunction photocatalysts for wastewater purification [J]. Sep. Purif. Technol., 2021, 274: 118973
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|