Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (10): 777-790    DOI: 10.11901/1005.3093.2024.482
  研究论文 本期目录 | 过刊浏览 |
NH2-UiO-66/BiOBr异质结光催化剂的制备及其对氧氟沙星的降解性能
任学昌(), 庞绪闯, 芦泽瑞, 陈泓锦, 俱鸿斌, 张官国, 李忠山
兰州交通大学环境与市政工程学院 兰州 730070
Preparation of NH2-UiO-66/BiOBr Heterojunction Photocatalyst and Its Degradation Performance for Ofloxacin
REN Xuechang(), PANG Xuchuang, LU Zerui, CHEN Hongjin, JU Hongbin, ZHANG Guanguo, LI Zhongshan
School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
引用本文:

任学昌, 庞绪闯, 芦泽瑞, 陈泓锦, 俱鸿斌, 张官国, 李忠山. NH2-UiO-66/BiOBr异质结光催化剂的制备及其对氧氟沙星的降解性能[J]. 材料研究学报, 2025, 39(10): 777-790.
Xuechang REN, Xuchuang PANG, Zerui LU, Hongjin CHEN, Hongbin JU, Guanguo ZHANG, Zhongshan LI. Preparation of NH2-UiO-66/BiOBr Heterojunction Photocatalyst and Its Degradation Performance for Ofloxacin[J]. Chinese Journal of Materials Research, 2025, 39(10): 777-790.

全文: PDF(11494 KB)   HTML
摘要: 

用溶剂热法制备NH2-UiO-66/BiOBr异质结光催化剂,使用XRD、SEM、TEM、FT-IR、XPS和UV-Vis等手段对其表征,研究了这种催化剂降解氧氟沙星(OFX)的性能。结果表明,这种催化剂中NH2-UiO-66与BiOBr之间的Z型异质结结构使其中的光生电子和空穴的分离和迁移效率大幅度提高。在模拟太阳光的照射下,NH2-UiO-66与BiOBr质量比为1∶1的催化剂NUB-1对OFX的降解率高达92.48%,显著优于单一组分催化剂的性能。这种催化剂对溶液pH值的适应范围较大、无机阴离子对其性能的影响较小。NUB-1的电荷分离和传输性能优异。这种催化剂中的主要活性物种空穴(h+)和超氧自由基(•O2-),对多种有机污染物的降解性能优异。5次循环使用后这种催化剂对OFX的降解率为82.11%,表明其可重复使用且性能的稳定性较高。

关键词 金属材料NH2-UiO-66异质结光催化氧氟沙星    
Abstract

The NH2-UiO-66/BiOBr heterojunction photocatalyst was synthesized via a solvothermal method, and its physicochemical properties were systematically characterized using XRD, SEM, TEM, FT-IR, XPS, and UV-Vis spectroscopy. The results confirmed the formation of a stable Z-scheme heterojunction structure between NH2-UiO-66 and BiOBr, which significantly improved the separation and migration efficiency of photogenerated electron-hole pairs. Under the irradiation of an artificial sunlight, the NUB-1 composite (mass ratio 1∶1) achieved a remarkable 92.48% degradation rate for ofloxacin (OFX), significantly outperforming the performance of either of the two components. NUB-1 also exhibited broad pH adaptability and showed minimal sensitivity to inorganic anions. Photoelectrochemical analyses indicated that NUB-1 exhibited superior charge separation and transport capabilities. Results of reactive species trapping tests and ESR analysis confirmed that holes (h+) and superoxide radicals (•O2-) were the main active species. Furthermore, NUB-1 showed high degradation efficiency for various organic pollutants. After five cycles, the degradation rate remained at 82.11%, demonstrating exceptional stability and reusability.

Key wordsmetallic materials    NH2-UiO-66    heterojunction    photocatalysis    ofloxacin
收稿日期: 2024-12-09     
ZTFLH:  TB31  
通讯作者: 任学昌,教授,rxchang1698@hotmail.com,研究方向为水处理高级氧化技术
作者简介: 任学昌,男,1970年生,博士
图1  OFX的标准曲线
图2  NH2-UiO-66、BiOBr和不同NH2-UiO-66/BiOBr比例的复合催化剂的XRD谱
图3  NH2-UiO-66、BiOBr和NUB-1复合催化剂的FT-IR光谱
图4  NH2-UiO-66, BiOBr和NUB-1的SEM照片以及NUB-1的EDS图
图5  NUB-1的TEM照片
图6  NUB-1的XPS全谱以及C 1s, N 1 s, O 1 s, Zr 3d, Bi 4f的高分辨XPS谱
图7  N2吸附-脱附等温线以及NH2-UiO-66、BiOBr和NUB-1的孔径分布
图8  UV-vis DRS图谱、Tauc图以及NH2-UiO-66和BiOBr的Motty-Schottky曲线
图9  光电流瞬态响应、电化学阻抗谱和PL谱
图10  不同复合比例的光催化剂对OFX的降解曲线和反应速率常数
图11  NUB-1不同投加量的降解曲线和反应速率常数
图12  pH值对OFX降解性能的影响和反应速率常数
图13  无机阴离子对OFX降解性能的影响和反应速率常数
图14  NUB-1催化剂的循环稳定性
图15  NUB-1对不同污染物的降解曲线
图16  捕获活性物种的实验
图17  NUB-1不同自由基的ESR信号捕获曲线
图18  NH2-UiO-66/BiOBr Z型异质结光催化剂降解OFX的机理
[1] Yang J M, Tian S F, Song Z, et al. Recent advances in sorption-based photocatalytic materials for the degradation of antibiotics [J]. Coord. Chem. Rev., 2025, 523: 216257
[2] Liu L, Sun Z, Feng J J, et al. Potential of solar photodegradation of antibiotics in shallow ditches: Kinetics, the role of dissolved organic matter and prediction models [J]. Sci. Total Environ., 2024, 955: 176725
[3] Jia W L, Gao F Z, Song C, et al. Swine wastewater co-exposed with veterinary antibiotics enhanced the antibiotic resistance of endophytes in radish (Raphanus sativus L.) [J]. Environ. Pollut., 2024, 362: 125040
[4] Dhiman N. Continuous flow column adsorption and desorption for the study of interaction of fluoroquinolone antibiotic ofloxacin hydrochloride with ZnO and CuO nanometal oxides in aqueous solution: (Continuous column adsorption desorption) [J]. Waste Manage. Bull., 2024, 2(3): 43
[5] Liu J W, Shi J, Deng H P. Fe-O-Bi efficient electron transfer channels and photo-Fenton synergy in S-scheme heterojunctions: insights into interfacial interactions and ofloxacin degradation [J]. Green Energy Environ., 2025, 10: 1503
[6] Su R D, Zhu Y F, Gao B Y, et al. Progress on mechanism and efficacy of heterogeneous photocatalysis coupled oxidant activation as an advanced oxidation process for water decontamination [J]. Water Res., 2024, 251: 121119
[7] Zha Y, He X Y, Wang Y D, et al. Visible-light-response Fe-doped BiOCl microspheres with efficient photocatalysis-Fenton degradation of antibiotics [J]. J. Water Process. Eng., 2024, 67: 106225
[8] Zhu C Z, Hou J K, Wang X H, et al. Optimizing ligand-to-metal charge transfer in metal-organic frameworks to enhance photocatalytic performance [J]. Chem. Eng. J., 2024, 499: 156527
[9] Yusuf M, Kurzina I, Voronova G, et al. Trends in the energy and environmental applications of metal-organic framework-based materials [J]. Energy Adv., 2024, 3(9): 2079
[10] Yao Q, Li S Q, Ban J F, et al. Functionalized Zr-MOFs for Enhancing flame retardancy and smoke suppression performance on TPU [J]. ChemistrySelect, 2024, 9(23): e202401227
[11] Yu C, Zhang X J, Song C X, et al. Development of Ce-doped NH2-UiO-66(Zr) photocatalysts for efficient CO2 reduction in an aqueous system [J]. Chem. Eng. J., 2024, 499: 156088
[12] Hegazy S, Ghannami A, Dos Reis G S, et al. Activation and Zr precursor influence on UiO-66-NH2 composites for efficient cationic and anionic dye removal [J]. Chem. Eng. Sci., 2025, 302: 120785
[13] Bui T M N, Vo T K, Phuong N H Y, et al. Fe(III)-incorporated UiO-66(Zr)-NH2 frameworks: Microwave-assisted scalable production and their enhanced photo-Fenton degradation catalytic activities [J]. Sep. Purif. Technol., 2025, 355: 129723
[14] Fan W J, Chang H, Zheng X J, et al. Elaborate construction of a MOF-derived novel morphology Z-scheme ZnO/ZnCdS heterojunction for enhancing photocatalytic H2 evolution and tetracycline degradation [J]. Sep. Purif. Technol., 2025, 357: 130068
[15] Xu X M, Xi Z S, Zhao D F, et al. Regulating electron transfer between valence-variable cuprum and cerium sites within bimetallic metal-organic framework towards enhanced catalytic hydrogenation performance [J]. J. Colloid Interface Sci., 2025, 679: 1159
[16] Diaz N O, Rodríguez C A, Durán-Álvarez J C, et al. A theoretical and experimental approach for photocatalytic degradation of caffeic acid using BiOBr microspheres [J]. Mater. Sci. Eng., 2021, 273B: 115432
[17] Imam S S, Adnan R, Kaus N H M. The photocatalytic potential of BiOBr for wastewater treatment: A mini-review [J]. J. Environ. Chem. Eng., 2021, 9(4): 105404
[18] Meng L Y, Qu Y, Jing L Q. Recent advances in BiOBr-based photocatalysts for environmental remediation [J]. Chin. Chem. Lett., 2021, 32(11): 3265
[19] Song W D, Zhao J H, Xie X H, et al. Novel BiOBr by compositing low-cost biochar for efficient ciprofloxacin removal: the synergy of adsorption and photocatalysis on the degradation kinetics and mechanism insight [J]. RSC Adv., 2021, 11(25): 15369
[20] Guo Y X, Wen H, Zhong T, et al. Core-shell-like BiOBr@BiOBr homojunction for enhanced photocatalysis [J]. Colloids Surf., 2022, 644A: 128829
[21] Jiang H L, Wang Q, Chen P G, et al. Photocatalytic degradation of tetracycline by using a regenerable (Bi) BiOBr/rGO composite [J]. J. Cleaner Prod., 2022, 339: 130771
[22] Gao K X, Hou L A, An X Q, et al. BiOBr/MXene/gC3N4 Z-scheme heterostructure photocatalysts mediated by oxygen vacancies and MXene quantum dots for tetracycline degradation: Process, mechanism and toxicity analysis [J]. Appl. Catal., 2023, 323B: 122150
[23] Pan Y, Yuan X Z, Jiang L B, et al. Stable self-assembly AgI/UiO-66(NH2) heterojunction as efficient visible-light responsive photocatalyst for tetracycline degradation and mechanism insight [J]. Chem. Eng. J., 2020, 384: 123310
[24] Ghorbani M, Nazar A R S, Frahadian M, et al. Fabrication of novel ZnO@BiOBr/UiO-66-NH2 core-shell heterojunction for improved tetracycline degradation [J]. Appl. Surf. Sci., 2023, 612: 155819
[25] Yang Z C, Li J, Cheng F X, et al. BiOBr/protonated graphitic C3N4 heterojunctions: Intimate interfaces by electrostatic interaction and enhanced photocatalytic activity [J]. J. Alloy. Compd., 2015, 634: 215
[26] Chen Q, He Q Q, Lv M M, et al. Selective adsorption of cationic dyes by UiO-66-NH2 [J]. Appl. Surf. Sci., 2015, 327: 77
[27] Fang X, Wu S B, Wu Y H, et al. High-efficiency adsorption of norfloxacin using octahedral UIO-66-NH2 nanomaterials: Dynamics, thermodynamics, and mechanisms [J]. Appl. Surf. Sci., 2020, 518: 146226
[28] Chankhanittha T, Johnson B, Bushby R J, et al. One-pot hydrothermal synthesis of g-C3N4/BiOBr/Bi2MoO6 as a Z-scheme heterojunction for efficient photocatalytic degradation of ciprofloxacin (CIP) antibiotic and Rhodamine B (RhB) dye [J]. J. Alloy. Compd., 2024, 1008: 176764
[29] Zhang R, Chen Z Y, Li Y, et al. A novel visible-light-induced double Z-scheme photocatalytic system: NH2-UiO-66/BiOBr/Bi2S3 for degradation of tetracycline hydrochloride and rhodamine B [J]. Colloids Surf., 2022, 649A: 129350
[30] Xu J M, Guo H L, Song J B, et al. Synthesis of NH2-UiO-66/Bi4O5I2 heterojunction for high tetracycline reduction under visible light [J]. Mater. Sci. Semicond. Process., 2024, 181: 108636
[31] Miao X S, Sun JW, Ma F, et al. Construction of Type-II Zn-SnO2/BiOBr heterojunctions with dual-oxygen vacancies for enhanced photocatalytic degradation [J]. Opt. Mater., 2024, 157: 116295
[32] Liu L, Li Y H, Wang K, et al. A novel persulfate activation strategy by double Z-scheme Bi2O3/CuBi2O4/BiOBr heterojunction: Non-radical dominated pathway for levofloxacin degradation [J]. J. Environ. Chem. Eng., 2024, 12(6): 114139
[33] Yang C D, Feng S, Ma C C, et al. Bi2Sn2O7/UiO-66-NH2 heterojunction photocatalyst simultaneously adsorbed and photodegraded tetracycline [J]. J. Environ. Chem. Eng., 2023, 11(3): 109664
[34] Wang F, He T, Gao Y N, et al. Z-scheme heterojunction Bi2MoO6/NH2-UiO-66(Zr/Ce) for efficient photocatalytic degradation of oxytetracycline: Pathways and mechanism [J]. Sep. Purif. Technol., 2023, 325: 124596
[35] Su Q, Li J, Wang B, et al. Direct Z-scheme Bi2MoO6/UiO-66-NH2 heterojunctions for enhanced photocatalytic degradation of ofloxacin and ciprofloxacin under visible light [J]. Appl. Catal., 2022, 318B: 121820
[36] Yuan Y X, Liao Q L, Zhao T X. Synthesis of UiO-66-NH2@PILs core-shell composites for CO2 conversion into cyclic carbonates via synergistic catalysis under solvent- and additive-free conditions [J]. Colloids Surf., 2025, 704A: 135492
[37] Landi S, Segundo I R, Freitas E, et al. Use and misuse of the Kubelka-Munk function to obtain the band gap energy from diffuse reflectance measurements [J]. Solid State Commun., 2022, 341: 114573
[38] Banyal R, Sonu S, Soni V, et al. Synergetic photocatalytic degradation of the tetracycline antibiotic over S-scheme based BiOBr/CuInS2/WO3 ternary heterojunction photocatalyst [J]. Solid State Sci., 2024, 157: 107700
[39] Zhu P F, Cao H Y, Yang H, et al. One-pot synthesis of Ni(Ⅱ)-doped UiO-66-NH2 for enhanced photocatalytic CO2 reduction to CO with efficient charge transfer [J]. Appl. Surf. Sci., 2024, 652: 159348
[40] Li N, Hua J, Chen F Y, et al. A novel 0D/3D Z-Scheme heterojunction ZnS/MIL-88(A) with significantly boosted photocatalytic activity toward tetracycline [J]. J. Phys. Chem. Solids, 2025, 196: 112372
[41] Tan C, Li Y Y, Wang H H, et al. Preparation of g-C3N4/Ag/TiO2 NTs and photocatalytic degradation of ceftazidine [J]. Chin. J. Mater. Res., 2022, 36(5): 392
[41] 谭 冲, 李媛媛, 王欢欢 等. g-C3N4/Ag/TiO2NTs的制备及其对西维因的光催化降解 [J]. 材料研究学报, 2022, 36(5): 392
[42] Chen X Y, Yao J J, Xia B, et al. Influence of pH and DO on the ofloxacin degradation in water by UVA-LED/TiO2 nanotube arrays photocatalytic fuel cell: mechanism, ROSs contribution and power generation [J]. J. Hazard. Mater., 2020, 383: 121220
[43] Padhan P, Sethy A, Behera P K. Host-guest interaction between Ofloxacin-β-Cyclodextrin complexes in acidic and neutral pH: A fluorescence quenching study [J]. J. Photochem. Photobiol., 2017, 337: 165
[44] Qiang Z M, Adams C. Potentiometric determination of acid dissociation constants (pKa) for human and veterinary antibiotics [J]. Water Res., 2004, 38(12): 2874
[45] Wei X X, Chen J W, Xie Q, et al. Distinct photolytic mechanisms and products for different dissociation species of ciprofloxacin [J]. Environ. Sci. Technol., 2013, 47(9): 4284
[46] Xia B. Study on the influence of pH and DO inphotocatalytic fuel cell degrading ofloxacin [D]. Chongqing: Chongqing University, 2018
[46] 夏 彬. pH和DO对光催化燃料电池降解氧氟沙星影响研究 [D]. 重庆: 重庆大学, 2018
[47] Luo J J, Wu L S, Liu D, et al. Preparation of S-scheme heterojunction photocatalyst Y2O3/BiOCl and visible light degradation of ofloxacin: Photocatalytic mechanism, DFT calculation, degradation pathway, and toxicity evaluation [J]. J. Alloy. Compd., , 2025, 1010: 177888
[48] Yang Y, Ye J, Zhai Y, et al. ZIF-67-derived monolithic bimetallic sulfides as efficient persulfate activators for the degradation of ofloxacin [J]. Surf. Interfaces, 2024, 51: 104713
[49] Wei Y Q, Liu C Y, Li X X, et al. Construction of S-scheme BiOCl/Bi24O31Cl10 heterojunction by thermally induced in-situ phase transition strategy for photocatalytic degradation of ciprofloxacin [J]. J. Water Process. Eng., 2025, 69: 106795
[50] Luo J M, Bo S F, Qin Y N, et al. Transforming goat manure into surface-loaded cobalt/biochar as PMS activator for highly efficient ciprofloxacin degradation [J]. Chem. Eng. J., 2020, 395: 125063
[51] Zhang Q Y, Sun X Q, Dang Y, et al. A novel electrochemically enhanced homogeneous PMS-heterogeneous CoFe2O4 synergistic catalysis for the efficient removal of levofloxacin [J]. J. Hazard. Mater., 2022, 424: 127651
[52] Huong V H, Nguyen V C, Pham K P, et al. Construction dual active sites on SnO2 via Fe doping for effective ciprofloxacin photodegradation [J]. J. Alloy. Compd., 2024, 1005: 176020
[53] Zhang Y, Zhou J B, Feng Q Q, et al. Visible light photocatalytic degradation of MB using UiO-66/g-C3N4 heterojunction nanocatalyst [J]. Chemosphere, 2018, 212: 523
[54] Yang Z F, Xia X N, Shao L H, et al. Efficient photocatalytic degradation of tetracycline under visible light by Z-scheme Ag3PO4/mixed-valence MIL-88A(Fe) heterojunctions: Mechanism insight, degradation pathways and DFT calculation [J]. Chem. Eng. J., 2021, 410: 128454
[55] Qi X M, Wu Q, Wang X J, et al. Design of UiO-66@BiOIO3 heterostructural composites with remarkable boosted photocatalytic activities in removing diverse industrial pollutants [J]. J. Phys. Chem. Solids, 2021, 151: 109903
[56] Piao C, Chen L, Liu Z Y, et al. Construction of solar light-driven dual Z-scheme Bi2MoO6/Bi2WO6\AgI\Ag photocatalyst for enhanced simultaneous degradation and conversion of nitrogenous organic pollutants [J]. Sep. Purif. Technol., 2021, 274: 119140
[57] Mengting Z, Duan L, Zhao Y, et al. Fabrication of the flower-like Z-scheme heterojunction photocatalyst Bi-BiOI/UiO 66 for enhanced photodegradation of acetaminophen in simulated wastewater [J]. J. Environ. Manage., 2024, 354: 120325
[58] Huang W G, Wang X Z, Zhang W T, et al. Intraligand charge transfer boosts visible-light-driven generation of singlet oxygen by metal-organic frameworks [J]. Appl. Catal., 2020, 273B: 119087
[59] Wang T Y, Zhao C, Meng L H, et al. In-situ-construction of BiOI/UiO-66 heterostructure via nanoplate-on-octahedron: A novel p-n heterojunction photocatalyst for efficient sulfadiazine elimination [J]. Chem. Eng. J., 2023, 451: 138624
[60] Ren J W, Lv S, Wang S Q, et al. Construction of efficient g-C3N4/NH2-UiO-66 (Zr) heterojunction photocatalysts for wastewater purification [J]. Sep. Purif. Technol., 2021, 274: 118973
[1] 杨景清, 董文超, 陆善平. δ-铁素体含量对高SiN奥氏体不锈钢焊缝性能的影响[J]. 材料研究学报, 2025, 39(9): 641-649.
[2] 詹杰, 陈小江, 邹之利, 苏兴东, 谢世宇, 江亮, 王金铃, 王烈林. 纳米Ag0@ACF材料的制备及其对气态碘的吸附性能[J]. 材料研究学报, 2025, 39(9): 673-682.
[3] 施渊吉, 程诚, 张海涛, 胡道春, 陈晶晶, 黎军顽. β-SiC半导体器件在滑动摩擦中材料去除行为的纳观分析[J]. 材料研究学报, 2025, 39(9): 701-711.
[4] 王炳林, 柴一峰, 谭圣霞, 郭升伟, 姜如, 朱中华, 张禹涛, 黄桂芳, 黄维清. g-C3N4/CdS S型异质结复合光催化材料的制备及其性能[J]. 材料研究学报, 2025, 39(9): 712-720.
[5] 周影影, 张瑛嫺, 淡卓娅, 杜旭, 杜浩楠, 甄恩远, 罗发. 掺杂LaYFeO3 陶瓷吸波性能的影响[J]. 材料研究学报, 2025, 39(8): 561-568.
[6] 王铭宇, 李述军, 和正华, 唐明德, 张思倩, 张浩宇, 周舸, 陈立佳. 激光功率和扫描速度对SLM制备Ti5553合金性能的影响[J]. 材料研究学报, 2025, 39(8): 583-591.
[7] 耿瑞文, 杨志豇, 杨蔚华, 谢启明, 游津京, 李立军, 吴海华. 6H-SiC纳米磨削亚表面损伤机理的分子动力学研究[J]. 材料研究学报, 2025, 39(8): 603-611.
[8] 陆通, 王亚娜, 张超, 雷芃, 张鸿荣, 黄光伟, 郑立允. BN掺杂对热变形钕铁硼磁体性能的影响[J]. 材料研究学报, 2025, 39(8): 612-618.
[9] 张伟, 张兵, 周军, 刘跃, 王旭峰, 杨锋, 张海芹. 冷轧 Q 值对TA18管材塑性变形织构演变的影响[J]. 材料研究学报, 2025, 39(8): 619-631.
[10] 谭德新, 陈诗慧, 罗小丽, 宁小媚, 王艳丽. 富缺陷Pd纳米片的合成和对甘油的电催化氧化性能[J]. 材料研究学报, 2025, 39(8): 632-640.
[11] 张宁, 王耀奇, 杨毅, 慕延宏, 李震, 陈志勇. Ti65钛合金的超塑变形和微观组织演变[J]. 材料研究学报, 2025, 39(7): 489-498.
[12] 刘晶, 李云杰, 秦煜, 李琳琳. GCr15轴承钢中渗碳体粒径的调控对其硬度的影响[J]. 材料研究学报, 2025, 39(7): 521-532.
[13] 韩杨燚, 张腾昊, 张可, 赵时雨, 汪创伟, 余强, 李景辉, 孙新军. 终冷温度对Ti-V-Mo复合微合金钢析出相、组织和硬度的影响[J]. 材料研究学报, 2025, 39(7): 533-541.
[14] 刘志华, 王明月, 李易娟, 丘一帆, 李翔, 苏伟钊. 1T/2H O-MoS2@S-pCN催化剂的制备和性能[J]. 材料研究学报, 2025, 39(7): 551-560.
[15] 杨亮, 揣荣岩, 薛丹, 刘芳, 刘昆霖, 刘畅, 蔡桂喜. SUS301L不锈钢电阻点焊接头的微观组织和力学性能研究[J]. 材料研究学报, 2025, 39(6): 435-442.