Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (6): 466-472    DOI: 10.11901/1005.3093.2019.523
  研究论文 本期目录 | 过刊浏览 |
表面喷涂壳聚糖溶液对聚偏氟乙烯多孔膜的结构和性能的影响
成世杰, 王晨洋, 殷舒怡, 张宏伟, 左丹英()
武汉纺织大学 湖北省纺织新材料与先进加工技术省部共建国家重点实验室 武汉 430020
Effect of Surface Spraying Chitosan Solution on Structure and Properties of Polyvinylidene Fluoride Porous Membrane
CHENG Shijie, WANG Chenyang, YIN Shuyi, ZHANG Hongwei, ZUO Danying()
State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technology, Wuhan Textile University, Wuhan 430020, China
引用本文:

成世杰, 王晨洋, 殷舒怡, 张宏伟, 左丹英. 表面喷涂壳聚糖溶液对聚偏氟乙烯多孔膜的结构和性能的影响[J]. 材料研究学报, 2020, 34(6): 466-472.
Shijie CHENG, Chenyang WANG, Shuyi YIN, Hongwei ZHANG, Danying ZUO. Effect of Surface Spraying Chitosan Solution on Structure and Properties of Polyvinylidene Fluoride Porous Membrane[J]. Chinese Journal of Materials Research, 2020, 34(6): 466-472.

全文: PDF(4940 KB)   HTML
摘要: 

在聚偏氟乙烯(PVDF)溶液膜表面喷涂壳聚糖(CS)醋酸溶液,用浸没相转变法制备PVDF多孔膜,研究CS溶液对多孔膜的结构和性能的影响并探讨了成膜机理。结果表明,随着溶液膜表面CS溶液体积的增加PVDF膜的孔隙率提高,膜表面的亲水性大幅度提高,β晶含量降低而α晶的含量提高;喷涂CS溶液前PVDF膜的上表面结构致密,喷涂CS溶液后PVDF膜上表面呈现多孔结构,其断面结构均为指状大孔结构;喷涂CS溶液的体积为2 mL、4 mL和6 mL的PVDF膜,其水通量先增加后降低,分别为683.33 L/m2·h、1121.57 L/m2·h、1171.36 L/m2·h和1029.02 L/m2·h。用不同方法制备的PVDF膜,其结构和性能不同,因为膜上表面的成膜机理不同。

关键词 材料表面与界面聚偏氟乙烯多孔膜壳聚糖喷涂膜结构水通量    
Abstract

After spraying acetic acid solution of chitosan (CS) on polyvinylidene fluoride (PVDF) solution film, PVDF porous membrane was prepared by immersion precipitation phase inversion method. The effect of the volume of CS solution on the structure and properties of porous membrane was investigated, and the mechanism of membrane formation was discussed. The results show that with the increase of CS solution volume the porosity and the surface hydrophilicity of the prepared PVDF membrane increased, the content of β crystal on the top surface decreased, while the content of α crystal increased. The top surface of plain PVDF membrane prepared with the PVDF solution film without sprayed CS solution has dense structure, while the upper surface of PVDF membrane prepared with the PVDF solution film after CS solution spraying has porous structure. The cross-section structure of all PVDF membranes is finger like macroporous structure. When CS solution volume was 2 mL, 4 mL and 6 mL, the water flux of corresponding PVDF membranes first increased and then decreased, which are 683.33 L/m2h, 1121.57 L/m2h, 1171.36 L/m2h and 1029.02 L/m2h, respectively. The difference in structure and properties of PVDF membranes prepared with different procedure was mainly due to the different formation mechanism for the top layer of the membranes.

Key wordssurface and interface in the materials    polyvinylidene fluoride porous membrane    chitosan    spraying    membrane structure    water flux
收稿日期: 2019-11-11     
ZTFLH:  TQ028.8  
基金资助:湖北省自然科学基金(2018CFB267)
作者简介: 成世杰,男,1994年生,硕士生
SampleSpraying volume of CS solution

CS content

/%

Porosity/%Mean pore diameter/μmMembrane thickness/μm

Contact angle

/(°)

PM00 mL085.780.479082.565
PM22 mL1.0990.940.7210067.070
PM44 mL2.2291.420.7410066.950
PM66 mL3.3489.480.729066.251
表1  喷涂不同体积CS溶液的PVDF膜的性质
图1  喷涂不同体积CS溶液的PVDF膜的红外谱图
图2  不同PVDF膜的红外谱图
SamplesElementEnergy/keVMass/%Atom/%
PM0C0.27745.156.59
F0.67754.5343.26
Cl2.6210.370.16
Total100100
PM4C0.27739.9150.87
N0.3922.452.68
F0.67757.6346.44
Total100100
表2  PVDF膜和喷涂4 mL CS溶液的PVDF膜表面的能谱分析
图3  喷涂不同体积CS溶液的PVDF膜上表面、下表面和断面的电镜照片
图4  喷涂不同体积CS溶液的PVDF膜水通量随时间的变化
图5  四种膜的孔隙率和水通量与平均孔径的关系
[1] Kang G D, Cao Y M, Application and modification of poly(vinylidene fluoride) (PVDF) membranes-A review[J], J. Membr. Sci., 2014, 463: 145
doi: 10.1016/j.memsci.2014.03.055
[2] Zeng K L, Zhou J, Cui Z L, et al.. Insight into fouling behavior of poly(vinylidene fluoride) (PVDF) hollow fiber membranes caused by dextran with different pore size distributions[J]. Chin. J. Chem. Eng., 2018, 26(2): 268
doi: 10.1016/j.cjche.2017.04.008
[3] Zhao G, Chen W N. Enhanced PVDF membrane performance via surface modification by functional polymer poly (N-isopropylacrylamide) to control protein adsorption and bacterial adhesion [J]. React. Funct. Polym., 2015, 97:19
doi: 10.1016/j.reactfunctpolym.2015.10.001
[4] Pan Y, Yu Z, Shi H, et al. A novel antifouling and antibacterial surface-functionalized PVDF ultrafiltration membrane via binding Ag/SiO2 nanocomposites [J]. J. Chem. Technol. Biotechnol., 2017, 92(3): 562
[5] Di M A, Sittinger M, Risbud M V. Chitosan: A versatile biopolymer for orthopedic tissue-engineering [J]. Biomaterials, 2005, 26(30): 5983
doi: 10.1016/j.biomaterials.2005.03.016
[6] Liao L, Fei F, Cheng B W, et al. Fabrication and antibacterial properties of cellulose triacetate/chitosan reverse osmosis membrane [J]. Acta Polym. Sinica, 2018, 5: 607
[6] (廖亮, 费鹏飞, 程博闻等. 三醋酸纤维素/壳聚糖反渗透膜的制备及性能研究 [J]. 高分子学报, 2018, 5: 607)
[7] XueY H, Fu R Q, Xu T W. Preparation of SPEEK and SPEEK/Chitosan composite proton exchange membranes for application indirect methanol full cells [J]. Acta Polym. Sinica, 2010, 3: 285
[7] (薛艳红, 傅荣强, 徐铜文. 磺化聚醚醚酮与壳聚糖共混制备直接甲醇燃料电池用质子交换膜 [J]. 高分子学报, 2010, 3: 285)
doi: 10.3724/SP.J.1105.2010.00285
[8] Elizalde C N B, Al-Gharabli S, Kujawa J, et al., Fabrication of blend polyvinylidene fluoride/chitosan membranes for enhanced flux and fouling resistance[J], Sep. Purif. Technol., 2018, 190: 68
[9] Li Q, Xu Z L, Yu L Y. Effects of mixed solvents and PVDF types on performances of PVDF microporous membranes [J]. J. Appl. Polym. Sci., 2010, 115 (4): 2277
[10] Chen F T, Shi X X, Chen X B, et al. Preparation and characterization of amphiphilic copolymer PVDF-g-PMABS and its application in improving hydrophilicity and protein fouling resistance of PVDF membrane [J], Appl. Surf. Sci., 2018, 427: 787
[11] Tao M M, Liu F, Ma B R, et al. Effect of solvent power on PVDF membrane polymorphism during phase inversion [J]. Desalination, 2013, 316: 137
[12] Chen P, Hou Z C, Lu X F. FTIR characterization of PVDF powder grafted with N-vinylpyrrolidone (NVP) by simultaneous irradiation method [J]. J. Radiat. Res. Radiat. Process. 2011, 29(3): 133
[12] (陈鹏, 侯铮迟, 陆晓峰. 聚偏氟乙烯共辐射接枝N_乙烯基吡咯烷酮的红外光谱分析 [J]. 辐射研究与辐射工艺研究, 2011, 29(3): 133)
[13] Liang S, Xiao K, Mo Y, et al. A novel ZnO nanoparticle blended polyvinylidene fluoride membrane for anti-irreversible fouling [J]. J. Membr. Sci. 2012, 394-395: 184
[14] Mathew S, Abraham T. E. Characterization of ferulic acid incorporated starch-chitosan blend films [J]. Food Hydrocolloids, 2008, 22: 826
[15] Ma W Z, Cao Y Y, Gong F H, et al. Poly(vinylidene fluoride) membranes prepared via nonsolvent induced phase separation combined with the gelation [J]. Colloids Surf. APhysicochem. Eng. Aspects, 2015, 479: 25
[16] Zuo D Y, Li H J, Liu H T, et al. Effect of different preparation methods on structure and properties of chitosan/poly-lactic acid blend porous membrane [J]. J Porous Mater., 2012, 19: 1015
[1] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[2] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[3] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[5] 陈开旺, 张鹏林, 李树旺, 牛显明, 胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(1): 39-46.
[6] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[7] 程红杰, 刘黄娟, 姜婷, 王法军, 李文. 近红外反射超疏水黄色涂层的制备和性能[J]. 材料研究学报, 2022, 36(9): 687-698.
[8] 张红亮, 赵国庆, 欧军飞, Amirfazli Alidad. 基于聚多巴胺的超疏水棉织物的一锅法制备及其油水分离性能[J]. 材料研究学报, 2022, 36(2): 114-122.
[9] 崔丽, 孙丽丽, 郭鹏, 马鑫, 王舒远, 汪爱英. 沉积时间对聚醚醚酮表面类金刚石薄膜的结构和性能的影响[J]. 材料研究学报, 2022, 36(11): 801-810.
[10] 李建中, 朱博轩, 王振宇, 赵静, 范连慧, 杨柯. 输尿管支架表面化学接枝镀铜涂层及其性能[J]. 材料研究学报, 2022, 36(10): 721-729.
[11] 李蕊, 王浩, 张天刚, 牛伟. Ti811合金表面激光熔覆Ti2Ni+TiC+Al2O3+CrxSy复合涂层的组织和性能[J]. 材料研究学报, 2022, 36(1): 62-72.
[12] 李修贤, 邱万奇, 焦东玲, 钟喜春, 刘仲武. α籽晶促进低温反应溅射沉积α-Al2O3薄膜[J]. 材料研究学报, 2022, 36(1): 8-12.
[13] 范金辉, 李鹏飞, 梁晓军, 梁建平, 徐长征, 蒋力, 叶祥熙, 李志军. 镍-不锈钢复合板轧制过程中界面的结合机制[J]. 材料研究学报, 2021, 35(7): 493-500.
[14] 卢壹梁, 杜瑶, 王成, 辛丽, 朱圣龙, 王福会. 纳米Al2O3TiO2改性有机硅涂层对304不锈钢高温氧化行为的影响[J]. 材料研究学报, 2021, 35(6): 458-466.
[15] 张会臣, 漆雪莲. 跑合过程引发钛合金水基润滑的超低摩擦特性[J]. 材料研究学报, 2021, 35(5): 349-356.