Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (7): 525-532    DOI: 10.11901/1005.3093.2017.303
  研究论文 本期目录 | 过刊浏览 |
EB-PVD制备的CoCrAlY涂层的喷丸强化
何利民1(), 邓仲华1,2, 黄光宏1, 常振东1, 刘其斌2
1 北京航空材料研究院 表面工程研究所 北京 100095
2 贵州大学材料与冶金学院 贵阳 550025
Shot Peening Process of CoCrAlY Coatings Prepared by EB-PVD
Limin HE1(), Zhonghua DENG1,2, Guanghong HUANG1, Zhendong CHANG1, Qibin LIU2
1 Research Institute of Surface Engineering, Beijing Institute of Aeronautical Materials, Beijing 100095, China
2 College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
引用本文:

何利民, 邓仲华, 黄光宏, 常振东, 刘其斌. EB-PVD制备的CoCrAlY涂层的喷丸强化[J]. 材料研究学报, 2018, 32(7): 525-532.
Limin HE, Zhonghua DENG, Guanghong HUANG, Zhendong CHANG, Qibin LIU. Shot Peening Process of CoCrAlY Coatings Prepared by EB-PVD[J]. Chinese Journal of Materials Research, 2018, 32(7): 525-532.

全文: PDF(4394 KB)   HTML
摘要: 

使用强度为0.1 N、0.2 N、0.3 N以及0.45 N的喷丸对用EB-PVD制备的CoCrAlY涂层进行表面强化,观察了喷丸强化前后涂层的表面形貌,测量了喷丸前后涂层的表面粗糙度、表面残余应力、涂层的厚度和截面硬度,对比分析了喷丸前后涂层物相变化以及涂层高温氧化性能。结果表明:当喷丸强度为0.2 N时,CoCrAlY涂层的抗高温氧化性能大幅度提高。喷丸强度大于等于0.45 N时涂层出现破损,抗高温氧化性能降低。适当强度的喷丸能降低CoCrAlY涂层表面的粗糙度,提高涂层的致密度,改善物相结构,进而提高其抗高温氧化性能。喷丸强度大于等于0.3 N时CoCrAlY涂层表面出现鳞状突出物,Al氧化物在此处择优生长,Al氧化膜因应力集中而破裂,降低涂层的使用寿命。

关键词 材料表面与界面喷丸EB-PVDCoCrAlY涂层高温氧化性能塑性变形    
Abstract

In order to investigate the isothermal oxidation performance of CoCrAlY coatings prepared by EB-PVD after high energy shot peening process with different intensity, the CoCrAlY coatings on high temperature alloy DZ466 were surface shot peened with intensity of 0.1 N, 0.2 N, 0.3 N and 0.45 N. The shot peened coatings were characterized in terms of surface morphology, surface roughness, surface residual stress, thickness and cross-sectional hardness and phase composition, as well as isothermal oxidation behavior in air at 1050℃. Results show that the isothermal oxidation resistance of CoCrAlY coating prepared by EB-PVD is greatly improved after surface shot peening with intensity of 0.1 N. When the shot peening intensity is greater than or equal to 0.45 N, the coating is damaged, which degrades the isothermal oxidation performance of the CoCrAlY coating. The suitable shot peening intensity can decrease the surface roughness, whilst increase the density and change the phase composition of the CoCrAlY coating, and so that lead to the improvement of isothermal oxidation performance of the CoCrAlY coating. When the shot peening intensity is greater than or equal to 0.3 N, scale-shaped bulges formed on the surface of CoCrAlY coating, resulting in preferential growth of Al-oxide there. Because of the rupture of Al-oxide film induced by stress concentration in this place, the service life of coating is degraded.

Key wordssurface and interface in the materials    shot peening    EB-PVD    CoCrAlY coating    isothermal oxidation performance    mechanical deformation
收稿日期: 2017-06-14     
ZTFLH:  TG146.2  
基金资助:国家高技术研究发展计划(2015AA034403)和贵州省科技合作计划(黔科合LH[2015]7650)
作者简介:

作者简介 何利民,男,1967年生,研究员

Material Ni Co Cr Al Mo W Ti Ta Hf Y
DZ466 Bal. 7~10 9~12 3~5.5 1~3 4~7 1~4 5~7 1~2
CoCrAlY Alloy Bal. 21~30 9~20 0.4~0.6
CoCrAlY Coating 63.33 23.54 12.77 0.36
表1  DZ466、CoCrAlY靶材与粘结层的化学成分(质量分数, %)
No. Strength of shot peening Time Overlap
1 0.1N 3 min 100%
2 0.2N 3 min 100%
3 0.3N 3 min 100%
4 0.45N 3 min 100%
表2  CoCrAlY涂层的喷丸强化的实验方案
图1  EB-PVD制备CoCrAlY涂层的截面形貌和表面形貌
图2  表面喷丸后CoCrAlY涂层在1050℃的氧化动力学曲线
图3  不同强度喷丸后CoCrAlY涂层的表面形貌
图4  喷丸强化后CoCrAlY涂层的表面粗糙度
图5  不同强度喷丸后CoCrAlY涂层的残余应力
图6  不同喷丸强度对CoCrAlY涂层厚度与截面硬度的影响:(a)涂层厚度变化(b)涂层截面硬度变化
图7  表面喷丸强化前后CoCrAlY涂层的XRD图谱
图8  表面喷丸前后的CoCrAlY涂层在1100℃高温氧化近300 h后的截面形貌
[1] Bose S.High Temperature Coatings[M]. Burlington: Butterworth-Heinemann, 2007: 6
[2] Yoshifumi O, Daisuke K, Naotoshi O, et al.Evolution of thermal barrier coatings for land based gas turbines at MHI[J]. Therm. Spray., Technol ., 2014, (03): 56(Yoshifumi O, Daisuke K, Naotoshi O等. 三菱重工地面燃气轮机热障涂层研究进展[J]. 热喷涂技术, 2014, (03): 56)
[3] Tang X Z, Li L P, Huang Z J, et al.Development of study on life prediction for turbine blade of heavy-duty gas turbine[J]. Gas.Turb. Technol ., 2015, (3): 6(唐学智, 李录平, 黄章俊等. 重型燃气轮机涡轮叶片寿命分析研究进展[J]. 燃气轮机技术, 2015, (3): 6)
[4] Guo H B, Xu H B, Gong S K, et al.Oxidation and bonding strength of eb-pvd thermal barrier coating[J]. Rare. Metal. Mat. Eng ., 2001, (4): 314(郭洪波, 徐惠彬, 宫声凯等. 表面强化对EB-PVD热障涂层的高温氧化性能及结合强度的影响[J]. 稀有金属材料与工程, 2001, 30(4): 314)
[5] Gomez-Vidal J C, Noel J, Weber J. Corrosion evaluation of alloys and MCrAlX coatings in molten carbonates for thermal solar applications[J]. Sol. Energy. Mater. Sol. Cells ., 2016, 157: 517
[6] Brodin H.Aspects of fatigue life in thermal barrier coatings[M]. Link?ping: Link?pingsUniversitet, 2009: 50
[7] Wright I G, Pint B A, Simpson C S, et al. High-temperature oxidation life characteristics of ODS-Fe3Al [J]. Mater. Sci. Forum ., 1997, 251-254: 195
[8] Wang B, Lu C Y, Sun C, et al.Effect of nicraly coatings onoxidation resistance of ni-base superalloy K17[J]. Cor. Sci. Pro. Technol ., 2002, 14(1): 7(王冰, 卢春燕, 孙超等. NiCrAlY涂层对Ni基高温合金K17抗氧化性能的影响[J]. 腐蚀科学与防护技术, 2002, 14(1): 7)
[9] Nicholls J.Designing oxidation-resistant coatings[J]. Jom-J. Min. Met. Mat. S ., 1999, 52(1): 28
[10] Gao Y K.Influence of different surface modifica-tion treatments on surface integrity and fatigue performance of TC4 titanium alloy[J]. Acta. Metall. Sin ., 2016, 52(8): 915(高玉魁. 不同表面改性强化处理对TC4钛合金表面完整性及疲劳性能的影响[J]. 金属学报, 2016, 52(8): 915)
[11] Hemker K J, Mendis B G, Eberl C. Characterizing the microstructure and mechanical behavior of a two-phase NiCoCrAlY bond coat for thermal barrier systems [J]. Mater. Sci. Eng., A, 2008, 483-484(1): 727
[12] Bai Z M, Guo L, Liang T Q, et al.Isothermal corrosion behavior of thermal barrier coatings in molten salt environments[J]. T. Mater. Heat.Treat ., 2011, 32(11): 123(白致铭, 郭磊, 梁天权等. 熔盐环境下热障涂层的等温热腐蚀行为研究[J]. 材料热处理学报, 2011, 32(11): 123)
[13] Shen Z Y, He L M, Huang G H, et al.Microstructures and mechanical properties ofTiAl/Ti3Al multi-layered composite[J]. Acta. Metall. Sin ., 2016, 52(12): 1579(申造宇, 何利民, 黄光宏等. TiAl/Ti3Al超薄多层复合材料的微观结构与力学性能[J]. 金属学报, 2016, 52(12): 1579)
[14] Song J X, Han Y F, Liu Q Q, et al.Effect of shot-peening on surface roughness of NiCoCrAlYcoating on Ni3Al base alloy IC6[J]. J. Aeronaut.Mater ., 2006, 26(3): 289(宋尽霞, 韩雅芳, 刘庆瑔等. 喷丸处理对IC6合金NiCoCrAlY涂层表面粗糙度的影响[J]. 航空材料学报, 2006, 26(3): 289)
[15] Li S S, Zhou C G, Gong S K, et al.Effect of ball blasting on the service properties of NiCoCrAlY coating of the alloy IC6 vane[J]. J. B. Univ. Aeronaut. Astronaut ., 2004, 30(10): 989(李树索, 周春根, 宫声凯等. 喷丸处理对IC6合金制导向叶片NiCoCrAlY涂层使用性能的影响[J]. 北京航空航天大学学报, 2004, 30(10): 989)
[16] Zhou Z H, Gong S K, Li H F, et al.Effects of shot peening process on thermal cycling lifetime of TBCs prepared by EB-PVD[J]. Chinese. J. Aeronaut ., 2007, 20(2): 145
[17] Ren W P, Li Q, Xiao C B, et al.Oxidation Behavior of CoCrAlY Bond Coating for Thermal Barrier Coating on DZ466 Super Alloy at 1050℃[J]. J. Mater. Eng ., 2014, (6): 74(任维鹏, 李青, 肖程波等. DZ466合金热障涂层CoCrAlY黏结层1050℃氧化行为[J]. 材料工程, 2014, (6): 74)
[18] Zhou S, Liu W G, Liu H, et al.Internal stress in hydrogenated amorphous silicon thin films deposited by plasma enhanced chemical vapor deposition[J]. Vac. Sci. Technol ., 2010, 30(4): 341(周顺, 刘卫国, 刘欢等. PECVD法沉积氢化非晶硅薄膜内应力的研究[J]. 真空科学与技术学报, 2010, 30(4): 341)
[19] Zhang Y, Yang J F, Fang Q F.Formation mechanism and measurement method of internal stress in thin films prepared by physical vapor deposition[J]. Sci. Technol. Innovation. Herald ., 2009, (34): 108(张瑛, 杨俊峰, 方前锋. 物理气相沉积法制备薄膜的内应力形成机理及测量方法[J]. 科技创新导报, 2009, (34): 108)
[20] Fang Y S, Tang W, Weng X L, et al.The theory analysis on residual stress mechanism in film prepared by physical vapor deposition[J]. J. Funct. Mater ., 2006, 37(12): 1959(房永思, 唐武, 翁小龙等. 物理气相沉积薄膜应力产生机理的理论分析[J]. 功能材料, 2006, 37(12): 1959)
[21] Wang R Z.Basic knowledge of residual stress determination-lecture No.5 review on the relationship between surface integrity and fatigue fracture resistance of metallic materials and components[J]. Phys. Testing. Chem. Anal. Part. A (Phys Anal) ., 2007, 43(10): 535(王仁智. 残余应力测定的基本知识——第五讲金属材料与零件的表面完整性与疲劳断裂抗力间的关系[J]. 理化检验-物理分册, 2007, 43(10): 535)
[22] Ru J L, Wang R Z.Investigation on the effect of the cyclic plastic deformation on the microstructure and density of NiCrAlY deposition[J]. C. Surf. Eng ., 1998, (3): 30(汝继来, 王仁智. 循环塑性变形对NiCrAlY涂层的组织结构与密度影响的研究[J]. 中国表面工程, 1998, (3): 30)
[23] Wang X, Li S Q, Meng Z W, et al.Influence of shot-peening coverage on surface integrity of TC4 titanium alloy[J]. J. Aeronaut.Mater ., 2013, 33(3): 34(王欣, 李四清, 孟震威等. 喷丸表面覆盖率对TC4钛合金表面完整性的影响[J]. 航空材料学报, 2013, 33(3): 34)
[24] Wang R Z, Ru J L.Investigation on the microstructure changes of NiCrA1Y deposition due to plastic deformation and ageing[J]. T. Mater. Heat. Treat ., 1999, (2): 14(王仁智, 汝继来. NiCrAlY涂层组织结构在塑变与时效过程中的变化研究[J]. 材料热处理学报, 1999, (2): 14)
[25] Han Z Y, Jing Z Z.Effect of isolated oxide on interface residual stress in thermal barrier coatings[J]. J. Civil. Aviation. Univ. China ., 2014, 32(4): 36(韩志勇, 靖珍珠. 热障涂层中孤岛氧化物对界面残余应力的影响[J]. 中国民航大学学报, 2014, 32(4): 36)
[26] Xu Q G, Tang J X, Wang N, et al.The effect of the pre-treatment of bond coat on the cyclic oxidation of EB-PVD TBCs[J]. J. Aeronaut. Mater ., 2004, 24(4): 30(徐前岗, 唐建新, 王宁等. 粘结层表面预处理对EB-PVD热障涂层循环氧化的影响[J]. 航空材料学报, 2004, 24(4): 30)
[1] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[2] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[3] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] 刘涛, 尹志强, 雷经发, 葛永胜, 孙虹. 选区激光熔化316L不锈钢高应变率压缩下的塑性变形行为[J]. 材料研究学报, 2023, 37(5): 391-400.
[5] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[6] 陈开旺, 张鹏林, 李树旺, 牛显明, 胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(1): 39-46.
[7] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[8] 程红杰, 刘黄娟, 姜婷, 王法军, 李文. 近红外反射超疏水黄色涂层的制备和性能[J]. 材料研究学报, 2022, 36(9): 687-698.
[9] 刘明, 伍家楠. 圆锥压头递增载荷对材料的划痕行为[J]. 材料研究学报, 2022, 36(3): 191-205.
[10] 张红亮, 赵国庆, 欧军飞, Amirfazli Alidad. 基于聚多巴胺的超疏水棉织物的一锅法制备及其油水分离性能[J]. 材料研究学报, 2022, 36(2): 114-122.
[11] 崔丽, 孙丽丽, 郭鹏, 马鑫, 王舒远, 汪爱英. 沉积时间对聚醚醚酮表面类金刚石薄膜的结构和性能的影响[J]. 材料研究学报, 2022, 36(11): 801-810.
[12] 李建中, 朱博轩, 王振宇, 赵静, 范连慧, 杨柯. 输尿管支架表面化学接枝镀铜涂层及其性能[J]. 材料研究学报, 2022, 36(10): 721-729.
[13] 李蕊, 王浩, 张天刚, 牛伟. Ti811合金表面激光熔覆Ti2Ni+TiC+Al2O3+CrxSy复合涂层的组织和性能[J]. 材料研究学报, 2022, 36(1): 62-72.
[14] 李修贤, 邱万奇, 焦东玲, 钟喜春, 刘仲武. α籽晶促进低温反应溅射沉积α-Al2O3薄膜[J]. 材料研究学报, 2022, 36(1): 8-12.
[15] 范金辉, 李鹏飞, 梁晓军, 梁建平, 徐长征, 蒋力, 叶祥熙, 李志军. 镍-不锈钢复合板轧制过程中界面的结合机制[J]. 材料研究学报, 2021, 35(7): 493-500.