Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (5): 394-400    DOI: 10.11901/1005.3093.2016.468
  论文 本期目录 | 过刊浏览 |
LaF3表面修饰Li[Li0.2Mn0.54Ni0.13Co0.13]O2的制备及其电化学性能
李成冬1,2(), 姚志垒1, 李举2, 徐进1, 熊新1
1 盐城工学院汽车工程学院 盐城 224051
2 江苏苏美达集团有限公司 南京 210018
Preparation and Electrochemical Performance of LaF3-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 as Cathode Material for Lithium-ion Batteries
Chengdong LI1(), Zhilei YAO1, Ju LI2, Jin XU1, Xin XIONG1
1 School of Automotive Engineering, Yancheng Institute of Technology, Yancheng 224051, China
2 Jiangsu Sumec Group Corporation, Nanjing 210018, China
引用本文:

李成冬, 姚志垒, 李举, 徐进, 熊新. LaF3表面修饰Li[Li0.2Mn0.54Ni0.13Co0.13]O2的制备及其电化学性能[J]. 材料研究学报, 2017, 31(5): 394-400.
Chengdong LI, Zhilei YAO, Ju LI, Jin XU, Xin XIONG. Preparation and Electrochemical Performance of LaF3-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 as Cathode Material for Lithium-ion Batteries[J]. Chinese Journal of Materials Research, 2017, 31(5): 394-400.

全文: PDF(2685 KB)   HTML
摘要: 

分别以Na2CO3和NH3H2O为沉淀剂和络合剂,用共沉淀法和950℃高温烧结制备Li[Li0.2Mn0.54Ni0.13Co0.13]O2,并用湿化学法将LaF3包覆在Li[Li0.2Mn0.54Ni0.13Co0.13]O2正极材料表层。用XRD, SEM, TEM等手段表征了LaF3包覆前后Li[Li0.2Mn0.54Ni0.13Co0.13]O2颗粒的微观结构和表面形貌,用电化学测试仪检测样品的充放电性能。结果表明, 包覆前后材料的结构没有变化,已经成功地将LaF3包覆在Li[Li0.2Mn0.54Ni0.13Co0.13]O2表面;LaF3包覆使Li[Li0.2Mn0.54Ni0.13Co0.13]O2的电化学综合性能明显提高。在5C高倍率下,LaF3-Li[Li0.2Mn0.54Ni0.13Co0.13]O2的放电比容量比原始Li[Li0.2Mn0.54Ni0.13Co0.13]O2超过了20.3 mAhg-1。经过100次循环后LaF3-Li[Li0.2Mn0.54Ni0.13Co0.13]O2的容量保持率高达94.8%,循环稳定性更佳。这些结果表明,LaF3包覆改性是提高Li[Li0.2Mn0.54Ni0.13Co0.13]O2电化学性能切实可行的方法。

关键词 材料合成与加工工艺锂离子电池共沉淀法    
Abstract

Cathode material of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 was synthesized firstly via co-precipitation method with Na2CO3 and NH3H2O as precipitation agent and complexing agent respectively and then followed by high temperature sintering process at 950oC. Further, the prepared Li[Li0.2Mn0.54Ni0.13Co0.13]O2 was coated with LaF3 through wet chemistry method. The Li[Li0.2Mn0.54Ni0.13Co0.13]O2 without and with LaF3 coating was characterized by means of XRD, SEM, TEM. The results show that the Cathode material may be successfully coated with LaF3 without changing its microstructure. Finally, the cathode material was examined by electrochemical means and which shows that its electrochemical properties were significantly enhanced after applying the LaF3 coating. The specific discharge capacity of the LaF3 coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 is 20.3 mAhg-1 higher than that of bare Li[Li0.2Mn0.54Ni0.13Co0.13]O2 at 5C rate. Meanwhile, the LaF3-Li[Li0.2Mn0.54Ni0.13Co0.13]O2 delivered an outstanding cycle stability with a high capacity retention of 94.8% after 100 cycles. Therefore, LaF3 coating method could be an effective way to enhance the electrochemical properties of Li[Li0.2Mn0.54Ni0.13Co0.13]O2.

Key wordssynthesizing and processing technics    lithium ion battery    co-precipitation method    Li[Li0.2Mn0.54Ni0.13Co0.13]O2    LaF3    Li[Li0.2Mn0.54Ni0.13Co0.13]O2    LaF3
收稿日期: 2016-08-15     
基金资助:国家自然科学基金(51407153)
作者简介:

作者简介 李成冬,男,1983年生,讲师

图1  用LaF3包覆前后Li[Li0.2Mn0.54Ni0.13Co0.13]O2试样的XRD图谱
Sample a/nm c/nm c/a I(003)/I(104)
Pristine LMNCO 0.2849 1.4236 4.997 1.534
LaF3-LMNCO 0.2850 1.4232 4.994 1.528
表1  LaF3包覆前后的Li[Li0.2Mn0.54Ni0.13Co0.13]O2试样的晶格结构参数和(003)与(104)衍射峰的强度比
图2  FeF3包覆前后Li[Li0.2Mn0.54Ni0.13Co0.13]O2正极材料的SEM图(a)原始LMNCO, (b) LaF3-LMNCO, (c) LaF3- LMNCO的EDS图谱)
图3  LaF3包覆前后Li[Li0.2Mn0.54Ni0.13Co0.13]O2正极材料的TEM图 (a)原始LMNCO, (b) LaF3-LMNCO (c) HR-TEM LaF3-LMNCO
图4  LaF3包覆前后Li[Li0.2Mn0.54Ni0.13Co0.13]O2正极材料在0.1C倍率下的首次充放电曲线
图5  LaF3`包覆前后Li[Li0.2Mn0.54Ni0.13Co0.13]O2正极材料的倍率性能
图6  LaF3`包覆前后Li[Li0.2Mn0.54Ni0.13Co0.13]O2正极材料的循环性能,2.0~4.6 V
图7  LaF3包覆前后Li[Li0.2Mn0.54Ni0.13Co0.13]O2正极材料的前三次循环伏安曲线
图8  LaF3包覆前后Li[Li0.2Mn0.54Ni0.13Co0.13]O2正极材料所组装的半电池的交流阻抗谱
[1] Zhou H M, Geng W J, Li J, et al.Compatibility of LiODFB electrolyte with LiNi0.5Mn1.5O4 as high-voltage cathode material[J]. Chin. J. Mater. Res., 2014, 28(10): 775(周宏明, 耿文俊, 李荐等. LiODFB基电解液与高电压正极材料LiNi0.5Mn1.5O4的相容性[J].材料研究学报, 2014, 28(10): 775)
[2] V Etacheri, R. Marom, R. Elazari, et al.Challenges in the development of advanced Li-ion batteries: a review[J]. Enger. Environ. Sci., 2011, 4(9): 3243
[3] Tang W, Liu L L, Tian S, et al.Nano-LiCoO2 as cathode material of large capacity and high rate capability for aqueous rechargeable lithium batteries[J]. Electrochem.Commun., 2010, 12(11): 1524
[4] Tian L, Huang K L, Solvothermal synthesis of nanometer LiFePO4/C composite cathode materials[J]. Chin. J. Mater. Res., 2011, 25(3): 321(田俐, 黄可龙. 纳米LiFePO4/C复合正极材料的溶剂热合成[J]. 材料研究学报, 2011, 25(3): 321)
[5] S Zhao, Y Bai, Q Chang, et al.Surface modification of spinel LiMn2O4 with FeF3 for lithium ion batteries[J]. Electrochim. Acta, 2013, 108: 727
[6] Du C Q, Zhang F, Ma C X, et al.Synthesis and electrochemical properties of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for lithium-ion battery[J]. Ionics, 2016, 22(2): 209
[7] A Ito, Li D C, Y Sato, et al. Cyclic deterioration and its improvement for Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2[J]. J. Power. Sources., 2010, 195(2): 567
[8] M M Thackaray, C S Johnson, J T Vaughey, et al.Advances in manganese-oxide 'composite' electrodes for lithium-ion batteries[J]. J. Mater. Chema., 2005, 15(23): 2257
[9] Han E S, Li Y P, Zhu L Z, et al.The effect of MgO coating on Li1.17Mn0.48Ni0.23Co0.12O2 cathode material for lithium ion batteries[J]. Solid State Ionics, 2014, 255(2): 113
[10] Shi S J, Tu J P, Zhang Y J, et al.Effect of Sm2O3 modification on Li[Li0.2Mn0.56Ni0.16Co0.08]O2 cathode material for lithium ion batteries[J]. Electrochim. Acta, 2013, 108(10): 441
[11] S. H. Lee, B. K. Koo, J. C. Kim, et al.Effect of Co3(PO4)2 coating on Li[Co0.1Ni0.15Li0.2Mn0.55]O2 cathode material for lithium rechargeable batteries[J]. J. Power Sources, 2008, 184(1): 276
[12] Wang Z Y, Liu E Z, He C N, et al.Effect of amorphous FePO4 coating on structure and electrochemical performance of Li1.2Ni0.13Co0.13-Mn0.54O2 as cathode material for Li-ion batteries[J]. J. Power Sources, 2013, 236: 25
[13] Zheng J M, Zhang Z R, Wu X B, et al. The effects of AlF3 coating on the performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 positive electrode material for Lithium-Ion battery[J]. J. Electrochem. Soc., 2008, 155(10): A 775
[14] Sun S W, Wan N, Wu Q, et al.Surface-modified Li[Li0.2Ni0.17Co0.07-Mn0.56]O2 nanoparticles with MgF2 as cathode for Li-ion battery[J]. Solid State Ionics, 2015, 278: 85
[15] Kang S F, Qin H F, Fang Y, et al.Preparation and electrochemical performance of Yttrium-doped Li[Li0.20Mn0.534Ni0.133Co0.133]O2 as cathode material for Lithium-Ion batteries[J], Electrochim. Acta, 2014, 144: 22
[16] Li N, An R, Su Y F, et al.The role of yttrium content in improving electrochemical performance of layered lithium-rich cathode materials for Li-ion batteries[J]. J. Mater. Chem. A, 2013, 1(34): 9760
[17] Li A, Chen Y, Chen H, et al.Electrochemical behavior and application of lead-lanthanum alloys for positive grids of lead-acid batteries[J]. J. Power Sources, 2009, 189(2): 1204
[18] C. Ghanty, R. N. Basu, S.B. Majumder, Electrochemical performances of 0.9Li2MnO3-0.1Li(Mn0.375Ni0.375Co0.25)O2 cathodes: Role of the cycling induced layered to spinel phase transformation[J]. Solid State Ionics 2014, 256(3): 19
[19] Tan X X, Tang Y G, Wang W D, et al.Synthesis and electrochemical characteristics of layered LiNi0.7Co0.15Mn0.15O2 cathode materials for Li-ion batteries[J]. Chin. J. Mater. Res., 2010, 24(2): 159(谭欣欣, 唐有根, 王伟东等. 锂离子电池正极材料球形LiNi0.7Co0.15Mn0.15O2的制备和性能[J].材料研究学报, 2010, 24(2): 159)
[20] Shi S J, Tu J P, Mai Y J, et al.Structure and electrochemical performance of CaF2 coated LiMn1/3Ni1/3Co1/3O2 cathode material for Li-ion batteries[J]. Electrochim.Acta, 2012, 83(12): 105
[21] Deng H, I. Belharouak, Wu H, et al. Effect of Cobalt incorporation and Lithium enrichment in Lithium Nickel Manganese oxides[J]. J. Electrochem. Soc., 2010, 157(7): A776
[22] N. Yabuuchi, K. Yoshii, S.T. Myung, et al.Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo1/3Ni1/3Mn1/3O2[J]. J. Amer. Chem. Soc., 2011, 133(12): 4404
[23] Liu X Y, Liu J L, Huang T, et al.CaF2-coated Li1.2Mn0.54Ni0.13-Co0.13O2 as cathode materials for Li-ion batteries[J]. Electrochim. Acta, 2013, 109: 52
[24] F. Amalraj, M. Talianker, B. Markovsky, et al.Study of the Lithium-rich integrated compound xLi2MnO3(1-x)LiMO2 (x around 0.5; M=Mn, Ni, Co; 2:2:1) and its electrochemical activity as positive electrode in Lithium cells[J]. J. Electrochem. Soc., 2013, 160(2): A324
[25] Y. K. Sun, M. J. Lee, C. S. Yoon, et al.The role of AlF3 coatings in improving electrochemical cycling of Li-enriched Nickel-Manganese oxide electrodes for Li-Ion batteries[J]. Advanced Materials, 2012, 24(9): 1192
[26] J. Liu, B. R. Jayan, A. Manthiram, Conductive surface modification with aluminum of high capacity layered Li[Li0.2Mn0.54Ni0.13-Co0.13]O2 cathodes[J]. J. Phys. Chem. C, 2010, 114(20): 9528
[27] M. M. Thackeray, S. H. Kang, C. S. Johnson, et al.Li2MnO3-stabilized LiMO2 (M=Mn, Ni, Co) electrodes for lithium-ion batteries[J]. J. Mater. Chem., 2007, 17(30): 3112
[1] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[2] 刘东璇, 陈平, 曹新荣, 周雪, 刘莹. 碗状C@FeS2@NC复合材料的制备及其电化学性能[J]. 材料研究学报, 2023, 37(1): 1-9.
[3] 周海涛, 侯湘武, 汪彦博, 肖旅, 袁勇, 孙京丽. Nb-TiAl合金的高温变形行为及其板材的性能[J]. 材料研究学报, 2022, 36(6): 471-480.
[4] 闫福照, 李静, 熊良银, 刘实. FeCr-ODS铁素体合金的氧化+粉锻工艺制备及其微观结构[J]. 材料研究学报, 2022, 36(6): 461-470.
[5] 赵超锋, 郑小燕, 李凯瑞, 贾世奎, 张明, 黎业生, 吴子平. 碳纳米管膜表面金属化用于高电流输出柔性锂离子电池[J]. 材料研究学报, 2022, 36(5): 373-380.
[6] 肖揽, 于文华, 黄昊, 吴爱民, 靳晓哲. 锂离子电池负极材料TiS3 纳米片的制备和性能[J]. 材料研究学报, 2022, 36(11): 821-828.
[7] 王永鹏, 贾治豪, 刘梦竹. 二维CdO纳米棒的制备及其用于葡萄糖传感器的可行性[J]. 材料研究学报, 2021, 35(1): 53-58.
[8] 夏傲, 赵晨鹏, 曾啸雄, 韩曰鹏, 谈国强. B掺杂MnO2的制备及其电化学性能[J]. 材料研究学报, 2021, 35(1): 36-44.
[9] 蔡国栋, 程西云, 王典. FDM3D打印316L不锈钢试样和La对析出物形貌和分布的影响[J]. 材料研究学报, 2020, 34(8): 635-640.
[10] 李玲芳, 曾斌, 原志朋, 范长岭. 一步水热法制备纳米SnO2@C复合材料及其储锂性能研究[J]. 材料研究学报, 2020, 34(8): 591-598.
[11] 谢礼兰, 杨冬升, 凌静. 高容量锂电池负极材料TiNb2O7的合成及其机理[J]. 材料研究学报, 2020, 34(5): 385-391.
[12] 巩桂芬,李泽,王磊,崔巍巍. 静电纺TiO2改性联苯型聚酰亚胺锂离子电池隔膜[J]. 材料研究学报, 2020, 34(3): 169-175.
[13] 马炜杰,杨西荣,罗雷,刘晓燕,郝凤凤. 复合形变超细晶纯钛的动态再结晶模型[J]. 材料研究学报, 2020, 34(3): 217-224.
[14] 姜巨福, 王迎, 肖冠菲, 邓腾, 刘英泽, 张颖. 变质细化和热处理对挤压铸造成形A356铝合金构件性能的影响[J]. 材料研究学报, 2020, 34(12): 881-891.
[15] 杨占鑫, 吴琼, 任奕桥, 屈凯凯, 张哲豪, 仲为礼, 范广宁, 齐国超. 宏量制备层状Ti3C2及其超级电容的性能[J]. 材料研究学报, 2020, 34(11): 861-867.