Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (11): 801-808    DOI: 10.11901/1005.3093.2014.226
  本期目录 | 过刊浏览 |
基于裂纹长度测定求解混凝土拉伸软化关系
罗孙一鸣,张君(),王家赫
清华大学土木工程系 北京 100084
Determination of Tension Softening Relationship of Concrete from Crack Length Measurement
Sunyiming LUO,Jun ZHANG(),Jiahe WANG
Department of Civil Engineering, Tsinghua University, Beijing 100084
引用本文:

罗孙一鸣,张君,王家赫. 基于裂纹长度测定求解混凝土拉伸软化关系[J]. 材料研究学报, 2014, 28(11): 801-808.
Sunyiming LUO, Jun ZHANG, Jiahe WANG. Determination of Tension Softening Relationship of Concrete from Crack Length Measurement[J]. Chinese Journal of Materials Research, 2014, 28(11): 801-808.

全文: PDF(2518 KB)   HTML
摘要: 

采用外贴应变片方法测定弯曲荷载下裂纹长度的发展, 得到荷载及相应弯曲裂纹长度关系(P-a); 然后应用粘性裂纹模型, 通过比较理论计算的梁的承载力与试验获得的相应裂纹长度时的承载力得到混凝土材料拉应力-裂纹宽度(s-w)关系, 并进而得到材料的开裂强度、抗拉强度、断裂能和脆性特征长度等断裂力学参数。基于上述方法, 求解3个强度等级的快硬混凝土抗拉软化关系。结果表明, 随着混凝土强度的升高裂纹粘聚应力逐渐增大, 混凝土材料的开裂强度、抗拉强度、断裂能均逐渐增大; 同时, 特征长度逐渐减小, 说明强度越高混凝土材料越脆。所得到的s-w关系, 可用于分析相关混凝土结构的断裂。

关键词 材料科学基础学科粘聚力裂缝长度软化关系断裂参数    
Abstract

A method for acquiring the tensile softening relationship of concrete was presented, which is based on the measurement of flexural crack length using strain gauge and then through fitting the theoretical calculated load and the experimentally determined load for the same cracking length to obtain the tensile softening (s-w) relationship. As long as the s-w relationship is known, the cracking strength, tensile strength, fracture energy and characteristic length of brittleness can be derived. The tension softening relationship of three kinds of fast hardening concretes was obtained using above method. The results show that the cracking strength, tensile strength and fracture energy increase with the increasing compressive strength of concrete, while the characteristic length of brittleness decreases. Therefore, the obtained s-w relationship can be used for fracture analyses of concrete structures.

Key wordsfoundational discipline in materials science    bridging stress    crack length    tensile softening relationship    fracture parameters
收稿日期: 2014-05-06     
基金资助:* 国家自然科学基金51278278资助项目。
图1  荷载与粘聚力共同作用下三点抗弯梁裂纹扩展示意图
图2  断裂面节点及粘聚力分布
No. Kg/m3 7 days/28 days
Cement Water Sand Stone Fly ash Silica fume Compressive strength/MPa Elastic modulus/GPa
SC30 295 200 750 1050 75 - 26.2/32.3 26.9/31.7
SC50 378 189 700 1020 95 - 37.0/52.5 31.4/36.6
SC80 541 180 600 1150 - 61 62.0/82.8 40.9/42.1
表1  混凝土配合比与力学性能
图3  裂纹长度测量试验示意图
图4  应变随时间变化曲线
图5  三点弯曲试验梁裂纹长度-时间曲线
图6  三点弯曲试验梁荷载-裂纹长度曲线
图7  SC混凝土的P-a曲线
图8  SC混凝土的s-w关系曲线
图9  计算P-CMOD曲线与试验结果对比
No. ?sfc(MPa) ?st(MPa) Gf(J/m2) lch(cm)
SC30-7D 1.58 1.96 34.75 24.35
SC50-7D 2.07 2.26 42.89 26.33
SC80-7D 2.94 3.61 63.51 19.50
SC30-28D 1.94 2.91 54.12 20.31
SC50-28D 2.73 3.18 73.07 23.90
SC80-28D 4.02 4.46 82.98 19.06
表2  3个系列混凝土的断裂参数
1 Kaplan F. M.,Crack propagation and fracture of concrete, Journal of the American of Concrete Institute, Proceedings, 58(5), 591(1961)
2 Strange P. C., Bryant A. H.,Experimental tests on concrete fracture, ASCE Journal of the Engineering Mechanics, 105, 337(1979)
3 Zhang Jun,Liu Qian, Determination of Concrete Fracture Parameters from a Three-Point Bending Test, Tsinghua Science and Technology, 8(6), 726(2003)
4 ZHANG Jun,WANG Lin, SUN Ming, LIU Qian, Effect of coarse/fine aggregate ratio and cement matrix strength on fracture parameters of concrete, Engineering Mechanics, 21(1), 136(2004)
4 (张 君, 王 林, 孙 明, 刘 骞, 粗细骨料比例和水泥石强度对混凝土断裂参数的影响, 工程力学, 21(1), 136(2004))
5 Hillerborg A., Modeer M.,Petersson P-E., Analysis of crack formation and crack growth by means of fracture mechanics and finite elements, Cement and Concrete Research, 6, 773(1976)
6 Petersson P-E.,Crack growth and development of fracture zones in plain concrete and similar materials, Report TVBM-1006, Division of Building Materials, Lund Institute of Technology(1981)
7 Schorn H.,Berger-bocker T., Test method for determining process zone position and fracture energy of concrete, Experimental Techniques, 29, 29(1989)
8 Li Z., Kulkarni S.M., Shah S.P.,New test methods for obtaining softening response of unnotched concrete specimen under uniaxial tension, Experimental Mechanics, 33, 191(1993)
9 Li Qingbin,Farhad Ansari, High strength concrete in uniaxial tension, ACI Materials Journal, 97(1), 49(2000)
10 Gopalaratnam V. S., Shah S. P.,Softening response of plain concrete in direct tension, ACI Journal, 82(3), 310(1985)
11 Wang Youjiang,Li Victor C., Backer Stanley, Experimental determination of tensile behavior of fiber reinforced concrete, ACI Material Journal, 87(5), 461(1990)
12 Reinhardt H. W.,Cornelissen A. W., Hordijk K. A., Tensile tests and failure analysis of concrete, Journal of Structure Engineering, 112, 2462(1986)
13 Carpinteri A., Chiaia B., Ferro G.,Scale dependence of tensile strength of concrete specimens: a multifractal approach, Magazin of Concrete Research, 50(3), 237(1998)
14 Zhang Jun,Leung Christopher K. Y., Xu Shilang, Evaluation of Fracture Parameters of Concrete from Bending Test, Materials and Structures, 43(6), 857(2010)
15 Cox B. N., Marshall D. B.,Stable and unstable solutions for bridges cracks in various specimens, Acta Metall Mater, 39(4), 579(1991)
16 ZHANG Lijuan,ZHANG Yajun, GAO Lingqing, Review on measurement methods of surface crack length. Development and Application of Materials, 5(10), 75(2009)
16 (张利娟, 张亚军, 高灵清, 表面裂纹长度的测量方法, 材料开发与应用, 5(10), 75(2009))
17 XU Shilang,ZHAO Guofan, The investigation on the propagation process of a crack in concrete by means of photoelastic coating, Journal of Hydroelectric Engineering, 3, 8(1991)
17 (徐世烺, 赵国藩, 光弹性贴片法研究混凝土裂缝扩展过程, 水力发电学报, 3, 8(1991))
[1] 杨栋天, 熊良银, 廖洪彬, 刘实. 基于热力学模拟计算的CLF-1钢改良设计[J]. 材料研究学报, 2023, 37(8): 590-602.
[2] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[3] 孙艺, 韩同伟, 操淑敏, 骆梦雨. 氟化五边形石墨烯的拉伸性能[J]. 材料研究学报, 2022, 36(2): 147-151.
[4] 谢明玲, 张广安, 史鑫, 谭稀, 高晓平, 宋玉哲. Ti掺杂MoS2薄膜的抗氧化性和电学性能[J]. 材料研究学报, 2021, 35(1): 59-64.
[5] 岳颗, 刘建荣, 杨锐, 王清江. Ti65合金的初级蠕变和稳态蠕变[J]. 材料研究学报, 2020, 34(2): 151-160.
[6] 鲁效庆,张全德,魏淑贤. A-π-D-π-A型吲哚类染料敏化剂的光电特性[J]. 材料研究学报, 2020, 34(1): 50-56.
[7] 李学雄,徐东生,杨锐. 钛合金双态组织高温拉伸行为的晶体塑性有限元研究[J]. 材料研究学报, 2019, 33(4): 241-253.
[8] 刘庆生, 曾少军, 张丹城. 基于细观结构的阴极炭块钠膨胀应力数值分析及实验验证[J]. 材料研究学报, 2017, 31(9): 703-713.
[9] 马志军, 莽昌烨, 王俊策, 翁兴媛, 司力玮, 关智浩. 三种金属离子掺杂对纳米镍锌铁氧体吸波性能的影响[J]. 材料研究学报, 2017, 31(12): 909-917.
[10] 代克顺, 朱黎, 王晗, 肖文凯. 316LN钢焊缝在冲击过程中裂纹扩展行为分析[J]. 材料研究学报, 2017, 31(12): 939-946.
[11] 黄莉. 石蜡/水相变乳液的稳定性能和储能容量[J]. 材料研究学报, 2017, 31(10): 789-795.
[12] 朱良,王晶,李晓慧,锁红波,张亦良. 基于堆焊成形钛合金高周疲劳实验数据的R-S-N模型[J]. 材料研究学报, 2015, 29(9): 714-720.
[13] 陈杨,钱程,宋志棠,闵国全. 用AFM力曲线技术测定聚合物微球的压缩杨氏模量*[J]. 材料研究学报, 2014, 28(7): 509-514.
[14] 于桂琴,刘建军,梁永民. 胍盐离子液体的合成及其对钢/钢摩擦副的摩擦性能研究*[J]. 材料研究学报, 2014, 28(6): 448-454.
[15] 王效岗,李乐毅,王海澜,周存龙,黄庆学. 双金属复合板材辊式矫直的数值模型*[J]. 材料研究学报, 2014, 28(4): 308-313.