Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (6): 469-475    DOI: 10.11901/1005.3093.2013.611
  本期目录 | 过刊浏览 |
金红石TiO2纳米棒阵列的生长机理及在染料敏化太阳电池中的应用
张增明(),王璟,丁雨田,胡勇,尚兴记
兰州理工大学 省部共建有色金属先进加工与再利用国家重点实验室 兰州 730050
Growth Mechanism of One-dimensional Rutile TiO2 Nanorods Array and Its Application for Dye-Sensitized Solar Cells
Zengming ZHANG(),Jing WANG,Yutian DING,Yong HU,Xingji SHANG
State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Materials, Lanzhou University of Technology, Lanzhou 730050
引用本文:

张增明,王璟,丁雨田,胡勇,尚兴记. 金红石TiO2纳米棒阵列的生长机理及在染料敏化太阳电池中的应用[J]. 材料研究学报, 2014, 28(6): 469-475.
Zengming ZHANG, Jing WANG, Yutian DING, Yong HU, Xingji SHANG. Growth Mechanism of One-dimensional Rutile TiO2 Nanorods Array and Its Application for Dye-Sensitized Solar Cells[J]. Chinese Journal of Materials Research, 2014, 28(6): 469-475.

全文: PDF(5659 KB)   HTML
摘要: 

用水热法制备了金红石TiO2纳米棒阵列光阳极, 并对样品进行XRD、SEM和HRTEM表征分析。文中研究了不同水热条件对金红石TiO2纳米棒阵列的生长形貌影响, 详细探讨了其水热生长机理。结果表明: 金红石纳米棒的直径和长度随着水热体系能量增加而增加; 添加剂对金红石纳米棒的水热生长影响较大; 在金红石TiO2纳米棒阵列光阳极水热生长过程中, 会同导电玻璃衬底之间形成致密层, 该致密层对DSSCs的光电转换性能影响较严重。将制备的金红石TiO2纳米棒阵列光阳极应用于DSSCs中, 在AM 1.5 100 mW/cm2 (air-mass 1.5, AM 1.5意为光线通过大气的实际距离为大气垂直厚度的1.5倍)标准条件下, 测得1.81%的光电转换效率。

关键词 金红石纳米棒水热法生长机理染料敏化太阳能电池    
Abstract

Photoanodes with a film of rutile TiO2 nanorods were prepared on a conductive glass substrate by hydrothermal method and then characterized by XRD, SEM and HRTEM. The effect of different hydrothermal conditions on the morphology of rutile TiO2 nanorods was carefully examined. The result shows that the diameter and length of rutile TiO2 nanorods increase with the increase of the energy of hydrothermal system; the additives has a great effect on the growth of rutile nanorods; a dense layer will form at the interface of conductive substrates and the rutile TiO2 nanorods, which will affect the photo-electronic properties of DSSCs markedly. Under the stand conditions (AM 1.5 100 mW/cm2), a photoelectric conversion efficiency 1.81% is measured for the dye-sensitized solar sells (DSSCs) constructed with the prepared photoanodes.

Key wordsrutile nanorod    hydrothermal growth    growth mechanism    DSSCs
收稿日期: 2013-08-26     
图1  不同TTB浓度的TiO2样品在450℃处理0.5 h后的XRD图谱
图2  金红石纳米棒阵列的TEM和HRTEM图片
图3  不同TTB浓度下金红石纳米棒阵列微观形貌
图4  不同水热温度下金红石纳米棒阵列的表面形貌
图5  NaCl添加量对金红石纳米棒阵列生长的影响
图6  不同Cl-含量金红石纳米棒阵列粒径分布
图7  不同条件下DSSCs光阳极的染料吸附性能
Photoelectrode Absorbed N 719/×107 molcm-2 VOC/V JSC/mAcm-2 FF η/%
a TTB0.6 0.22 0.676 0.648 0.23 0.10
bTTB0.8 0.51 0.713 1.185 0.25 0.19
c TTB1.2 0.42 0.605 1.102 0.26 0.18
d TTB0.8-140℃ 0.24 0.682 0.869 0.15 0.09
e TTB0.8-160℃ 0.63 0.774 4.004 0.29 0.89
f TTB0.8-180℃ 0.59 0.781 2.562 0.25 0.49
g TTB0.8-150℃ 0.72 0.750 4.31 0.34 1.10
h NR-6h-TT 1.05 0.839 6.43 0.33 1.78
i NR-12h-TT 0.75 0.836 4.39 0.49 1.81
j NR-24h-TT 0.57 0.760 2.49 0.35 0.67
表1  染料敏化太阳电池光电转换性能参数(图8)
图8  不同条件下染料敏化太阳能电池的光电转换性能
1 B. O'Reagan, M. Gr?tzel,A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 353(0), 737(1991)
2 K. J. A. Raj, B. Viswanathan,Effect of surface area, pore volume and partical size of P25 titania on the phase transformation of anatase rutile, Indian Journal of Chemistry, 48A(0), 1378(2009)
3 CHENG Lifang,WANG Yu, DAI Songyuan, WU Qinchong, WANG Kongjia, Preparation and virtues of nanocrystalling TiO2 porous film and its application in solar cell, Chinese Journal of Materials Research, 10(4), 404(1996)
3 (程黎放, 王 瑜, 戴松元, 邬钦崇, 王孔嘉, 纳米晶体TiO2多孔膜的制备、性能及其在太阳能电池中的应用, 材料研究学报, 10(4), 404(1996))
4 S. Ameen, M.S. Akhtar, M. Song, H.S. Shin,Vertically aligned ZnO nanorods on hot filament chemical vapor deposition grown graphene oxide thin film substrate: solar energy conversion, ACS Applied Material Interfaces, 4(8), 4405(2012)
5 B. C. Fitzmorris, G. K. Larsen, D. A. Wheeler, Y. Zhao, J. Z. Zhang,Ultrafast charge transfer dynamics in polycrystalline CdSe/TiO2 nanorods prepared by oblique angle codeposition, The Journal of Physical Chemistry C, 116(8), 5033(2012)
6 S. A. Berhe, S. Nag, Z. Molinets, W.J. Youngblood,Influence of seeding and bath conditions in hydrothermal growth of very thin (approximately 20nm) single-crystalline rutile TiO2 nanorod films, ACS Applied Material Interfaces, 5(4), 1181(2013)
7 ZHONG Qisheng,WANG Dawei, LI Feng, LU Gaoqing, CHENG Huiming, Preparation of free-standing transparent titania nanotube array membranes, Chinese Journal of Materials Research, 23(2), 118(2009)
7 (钟启生, 王大伟, 李 峰, 逯高清, 成会明, 无基底透明二氧化钛纳米管阵列薄膜的制备, 材料研究学报, 23(2), 118(2009))
8 B. Liu, E. S.Aydil,Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells, Journal of America Chemistry Society, 131(0), 3985(2008)
9 MA Guobin,ZHU Jianmin, ZHANG Wenqi, WANG Mu, YAN Naiben, Oriented array of TiO2 nanorods, Chinese Journal of Stereology and Image Analysis, 11(4), 243(2006)
9 (马国斌, 朱健民, 章闻奇, 王 牧, 闵乃本, 二氧化钛纳米棒阵列的取向研究, 中国体视学与图像分析, 11(4), 243(2006))
10 R. Xu, H. C. Zeng,Mechanistic investigation on salt-mediated formation of free-standing Co3O4 nanocubes at 95℃, Journal of Physical Chemistry B, 107(0), 926(2003)
11 E. Hosono, T. Tokunaga, S. Ueno, Y. Oaki, H. Imai, H. Zhou, S. Fujihara,Crystal-growth process of single-crystal-like mesoporous ZnO through a competitive reaction in solution, Crystal Growth & Design, 12(6), 2923(2012)
12 Z. S. Wang, H. Kawauchi, T. Kashima, H. Arakawa,Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell.Coordination Chemistry Reviews, 248(13-14), 1381(2004)
13 S. W. Lee, K. S. Ahn, K. Zhu, N. R. Neale, A. J. Frank,Effects of TiCl4 treatment of nanoporous TiO2 films on morphology, light harvesting and charge-carrier dynamics in dye-sensitized solar cells, The Journal of Physical Chemistry C, 116(40), 21285(2012)
14 TIAN Yongshu,The optimization of photoanode of dye-sensitized solar cells, P.h.D. Thesis, Chongqing University(2012)
14 (田永书, 染料敏化太阳能电池光阳极的优化, 博士学位论文, 重庆大学(2012))
[1] 刘艳云, 刘宇涛, 李万喜. rGO/PANI/MnO2 三元复合材料的制备和电化学性能[J]. 材料研究学报, 2022, 36(7): 552-560.
[2] 李万喜, 杜意恩, 郭芳, 陈勇强. CoFe2O4-Co3Fe7纳米粒子及CoFe2O4/多孔碳的制备及其电磁性能研究[J]. 材料研究学报, 2021, 35(4): 302-312.
[3] 夏傲, 赵晨鹏, 曾啸雄, 韩曰鹏, 谈国强. B掺杂MnO2的制备及其电化学性能[J]. 材料研究学报, 2021, 35(1): 36-44.
[4] 欧金花, 胡波年, 王薇, 韩瑜. 透明MSe2@氮掺杂碳膜对电极用于钴电解质双面DSSC[J]. 材料研究学报, 2020, 34(9): 683-690.
[5] 刘芝君, 李之锋, 王春香, 谢光明, 黄庆研, 钟盛文. 四氧化三钴/碳纳米管薄膜的水热合成及其储锂性能[J]. 材料研究学报, 2020, 34(8): 584-590.
[6] 王芳, 周宝玉, 冯伟, 雷家柳, 姜玉凤, 王琦迪. 耐磨铝基超疏水材料的制备及其动态冷凝行为[J]. 材料研究学报, 2020, 34(4): 277-284.
[7] 秦艳利,杨艳,赵鹏羽,刘振宇,倪丁瑞. 两步水热法制备BiOCl-RGO纳米复合材料及其光催化性能[J]. 材料研究学报, 2020, 34(2): 92-100.
[8] 陈顺生,李少珍,罗晓婧,王国宏. 直接Z-型立方/六方ZnIn2S4复合光催化剂的制备及其光催化性能[J]. 材料研究学报, 2019, 33(2): 145-154.
[9] 李子庆, 赫文秀, 张永强, 于慧颖, 李兴盛, 刘斌. 不同氮源对掺氮石墨烯的结构和性能的影响[J]. 材料研究学报, 2018, 32(8): 616-624.
[10] 方向明, 曾值, 高世勇, 李文强, 王金忠. ZnO纳米锥丛林阵列的低温制备和光催化性能[J]. 材料研究学报, 2018, 32(12): 945-950.
[11] 马志军, 莽昌烨, 王俊策, 翁兴媛, 司力玮, 关智浩. 三种金属离子掺杂对纳米镍锌铁氧体吸波性能的影响[J]. 材料研究学报, 2017, 31(12): 909-917.
[12] 张姣, 江学良, 余露, 陈江涛. 水热法制备二氧化铈纳米空心球及其吸附性能研究*[J]. 材料研究学报, 2016, 30(5): 365-371.
[13] 吴晓晓, 孔纲, 孙子文, 车淳山. 热浸镀Galfan表面镧盐转化膜的生长和耐腐蚀性能的研究[J]. 材料研究学报, 2016, 30(4): 269-276.
[14] 李思倩,黄杰,谢剑,张军,叶葱,王浩. 一步法热分解制备染料敏化太阳能电池 Pt对电极[J]. 材料研究学报, 2015, 29(9): 656-662.
[15] 汤洋,赵颖,张增光,陈颉. 氧化锌纳米柱阵列的水热合成及其性能[J]. 材料研究学报, 2015, 29(7): 529-534.