Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (2): 133-138    DOI: 10.11901/1005.3093.2013.325
  本期目录 | 过刊浏览 |
羟基磷灰石/α-氰基丙烯酸正丁酯相互作用及力学性能的MD模拟*
汪焰恩1(),魏庆华1,2,杨明明1,2,魏生民1,2
1. 西北工业大学 机电学院 西安 710072
2. 西北工业大学 现代设计与集成制造技术教育部重点实验室 西安 710072
Molecular Dynamics Simulation of Mechanical Properties and Surface Interaction for HA/NBCA
Yanen WANG1,**(),Qinghua WEI1,2,Mingming YANG1,2,Shengmin WEI1,2
1. Mechatronics School, Northwestern Polytechnical University, Xi’an 710072
2. The Key Laboratory of Contemporary Design and Integrated Manufacturing Technology, Ministry of Education, Northwestern Polytechnical University, Xi’an 710072
引用本文:

汪焰恩,魏庆华,杨明明,魏生民. 羟基磷灰石/α-氰基丙烯酸正丁酯相互作用及力学性能的MD模拟*[J]. 材料研究学报, 2014, 28(2): 133-138.
Yanen WANG, Qinghua WEI, Mingming YANG, Shengmin WEI. Molecular Dynamics Simulation of Mechanical Properties and Surface Interaction for HA/NBCA[J]. Chinese Journal of Materials Research, 2014, 28(2): 133-138.

全文: PDF(2756 KB)   HTML
摘要: 

基于羟基磷灰石陶瓷微球人工骨支架的制备工艺, 用分子动力学(MD)方法研究了羟基磷灰石(HA)的三个晶面(001)、(100)、(110)分别与生物胶黏剂α-氰基丙烯酸正丁酯(NBCA)相互作用后混合体系的结合能, 并计算分析了(110)晶面的力学性能和径向分布函数。结果表明, 三晶面所对应结合能关系为H A( 110 ) >H A( 100 ) >H A( 001 ); HA(110)晶面与NBCA之间粘结强度高于HA(100)和HA(001)晶面; 对聚合度为40的NBCA聚合物与HA相互作用的MD计算表明, HA(110)/NBCA混合体系的力学性能比单组份HA体系有所下降, 但满足人工骨对力学性能的要求; 元素之间的径向分布函数揭示了混合体系HA/NBCA组分之间的相互作用机理, NBCA与HA(110)晶面存在较强的相互作用。其主要原因是, NBCA中的N原子和羰基中的O原子分别与HA中的H原子形成的氢键, 进而说明了HA对NBCA的强吸附作用。

关键词 材料科学基础学科羟基磷灰石α-氰基丙烯酸正丁酯分子动力学结合能力学性能径向分布函数    
Abstract

Molecular dynamics simulation was applied to investigate the binding energy of NBCA on HA crystallographic planes (001), (100) and (110), and then the mechanical properties and radial distribution function of the HA(110)/NBCA mixed system were calculated and analyzed. The results show that HA (110) has the highest binding energy with NBCA because of its higher planar atom density than that of HA (001) and (100). The mechanical properties of HA(110)/NBCA mixed system is weaker than one-component HA system. However, the NBCA contains 40 monomers, its mechanical properties completely meet the requirements for the artificial bone scaffold. By calculating the radial distribution function of HA(110)/NBCA, the essence of its interface interaction were elucidated. There is a strong interaction between HA crystallographic plane (110) and NBCA, it mainly derives from the hydrogen bonds between O atoms which connect with C atoms of NBCA and H atoms in HA crystal, and a strong adsorption effect can be demonstrated between HA and NBCA.

Key wordsfoundational discipline in materials science    HA    NBCA    molecular dynamics    binding energy    mechanical properties    radial distribution function
收稿日期: 2013-05-25     
基金资助:* 国家自然科学基金51175432、50905147, 教育部高校博士点专项科研基金20116102110046, 陕西省自然科学基金2011JQ7005, 西北工业大学博士论文创新基金201213, 西北工业大学研究生创业种子基金Z2013043 资助项目。
作者简介: 本文联系人: 汪焰恩
图1  HA表面的球棍模型, (a) HA(0 0 1), (b) HA(1 0 0), (c) HA(1 1 0)本论文中, 所有图内氧原子, 氢原子, 氮原子, 碳原子, 钙原子, 磷原子分别用红色, 灰白色, 深蓝色, 灰黑色, 绿色和粉红色表示
图2  聚合度为40的α-氰基丙烯酸正丁酯NBCA
Forcefield Non- bond Summation method Ensemble Temperature Cut-off distance Thermostat Barostat Equilibrium Production Time Step Frame output
COMPASS Vdw,Coulomb Atom based, Ewald NVT 310 K 1.55 nm Andersen steps Parrinello steps 300,000 100,000 0.1fs Every 300 steps
表1  HA/NBCA 分子动力学模拟的参数设置
图3  HA(100)/(001)/(110)与NBCA混合体系分子动力学计算前/后模型
E H A s u r f a c e (K J? m o l - 1 ) E N B C A (K J? m o l - 1 ) E H A+N B C A (K J? m o l - 1 ) - E i n t e r (K J? m o l - 1 )
(0 0 1) 29485532.92 80290.54 29241730.82 324092.64
(1 0 0) 29780245.51 94178.91 29506537.85 367886.57
(1 1 0) 56216546.17 99364.56 55910123.82 405786.91
表2  结合能能的计算 (compass)
图4  HA与NBCA的结合能柱状图
原子团 HA(001) HA(110) HA(100)
C a 0.02 0.23 0.21
P O 4 0.11 0.12 0.11
O H 0.06 0.072 0.072
表3  HA表面的原子密度 (原子(×0.1 nm)-2)
Axis Young Modulus/GPa Poission Ratios
HA HA/NBCA
X 54.3 50.5 Exy 0.28 Exz 0.29
Y 54.3 51.4 Eyx 0.34 Eyz 0.31
Z 62.5 38.2 Ezx 0.21 Ezy 0.26
表4  杨氏模量E与泊松比λ
图5  HA(110)/NBCA的径向分布函数
1 LI Yan,ZHENG Jing, Comparative study on mechanical properties of human tooth enamel and artificial hydroxyapatite, Lubrication Engineering, 36(9), 36(2011)
1 (李 彦, 郑 靖, 人牙釉质和合成羟基磷灰石力学性能的对比研究, 润滑与密封, 36(9), 36(2011))
2 Heise U,Osborn J F, Duwe F, Hydroxyapatite ceramic as a bone substitute, International Orthopaedics, 14(3), 329(1990)
3 Sameer R Paital,Narendra B, Calcium phosphate coatings for bio-implant applications: Materials, performance factor, and methodologies, Materials Science and Engineering, 66(1-3), 1(2009)
4 YIN Xianguo,Nano-hydroxyapatite and its composite materials technology progress, S P & BMH Related Engineering, 02, 36(2012)
4 (殷宪国, 纳米羟基磷灰石及其复合材料技术进展, 硫磷设计与粉体工程, 02, 36(2012))
5 HUANG Fulong,DAI Honglian, SHAN Xuezhi, Study on Bone Formation Process of HA/PDLLA Composites in vivo, Chinese Journal of Biomedical Engineering, 26(2), 282(2007)
5 (黄福龙, 戴红莲, 单学智, HA/PDLLA 复合材料的体内成骨过程研究, 中国生物医学工程学报, 26(2), 282(2007))
6 Hong-ping Zhang,Xiong Lu, Yang Leng, Liming Fang, Shuxin Qu, Bo Feng, Jie Weng, Jianxin Wang, Molecular dynamics simulations on the interaction between polymers and hydroxyapatite with and without coupling agents, Acta Biomaterialia, 5, 1169(2009)
7 PAN Haihua,TAO Jinhui, WU Tao, TANG Ruikang, Molecular Simulation of water behavior on Hydroxyapatite Crystal Faces, Inorganic Chemistry Journal, 8(8),(2006)
7 (潘海华, 陶锦辉, 吴 韬, 唐睿康, 羟基磷灰石界面水 行为的分子模拟, 无机化学学报, 8(8),(2006))
8 LI Min,Bone tissue engineering with of porous hydroxyapatite its composites and performance, Hunan: Hunan University of Science and Technology, 12-16(2008)
8 (李 敏, 骨组织工程用多孔羟基磷灰石及其复合材料的制备与性能, 湖南: 湖南科技大学, 12-16(2008))
9 Sun H,Compass: an ab intio force-field optimized for condensedphase application–over view with details on alkane and benzene compounds, Phys Chem B, 02, 7338(1998)
10 Tung KL,Lu KT, Ruaan RC, Lai JY, Molecular dynamics study of the effect of solvent types on the dynamic properties of polymer chains in solution, Desalination, 192, 380(2006)
11 Sun H,Ren P, Fried J R, The COMPASS force field: parameterization and validation for phosphazenes, Computational and Theoretical Polymer Science, 8, 229(1998)
12 Rigby D,Sun H, Eichinger B E, Computer simulations of poly ( ethylene oxide): force field. pvt diagramand cyclization behavior, Polym Int, 44, 311(1997)
13 YANG Xiaozhen, Molecular Modeling and Polymer Materials, Beijing: Science Press, 48-56(2002)
13 (杨小震, 分子模拟与高分子材料, 北京: 科学出版社, 48-56(2002))
14 HUANG Yuan,Li Yanqiu, He Fang, Wang Yulin, Studies on Mechanism of Hydroxyapatite Dissolution, J Clin Stomatol, 28(6), 328(2012)
14 (黄 远, 李彦秋, 何 芳, 王玉林, 羟基磷灰石溶解机理的研究, 临床口腔医学杂志, 28(6), 328(2012))
15 Kay ML,Young RA, Posner AS, Crystal structure of hydroxylapatite, Nature, 204, 1050(1964)
16 Bhowmik R,Katti KS, Katti D, Molecular dynamics simulation of hydroxyapatite-polyacrylic acid interfaces, Polymer, 48, 664(2007)
17 Rybolt TR,Wells CE, Sisson CR, Black CB, Ziegler KA, Evaluation of molecular mechanics calculated binding energies for isolated and monolayer organic molecules on graphite, Colloid Interface Sci, 314, 434(2007)
18 LIU Ying,CAO Zhengdong, LU Shenlong, The studies of artificial bone Young's elastic modulus measurements and the physical stability of the material, Laboratory research and explore, 27(5), 39(2008)
18 (刘 盈, 曹正东, 陆申龙, 人造骨杨氏弹性模量的测量与材料物理稳定性的研究, 实验室研究与探索, 27(5), 39(2008))
19 ZHOU Panpan,The theory study of weak interactions between molecules: hydrogen bonding, van der Waals interactions and halogen bond, Lanzhou University, 2010
19 (周盼盼, 分子间弱相互作用体系的理论研究: 氢键、范 德华相互作用和卤键, 兰州: 兰州大学, 2010)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[3] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[4] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[5] 杨栋天, 熊良银, 廖洪彬, 刘实. 基于热力学模拟计算的CLF-1钢改良设计[J]. 材料研究学报, 2023, 37(8): 590-602.
[6] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[7] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[8] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[9] 雷志国, 文胜平, 黄晖, 张二庆, 熊湘沅, 聂祚仁. 冷轧变形和添加SiAl-2Mg-0.8Cu(-Si)合金的组织和力学性能的影响[J]. 材料研究学报, 2023, 37(6): 463-471.
[10] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[11] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[12] 陈志鹏, 朱智浩, 宋梦凡, 张爽, 刘田雨, 董闯. 基于Ti-6Al-4V团簇式设计的超高强Ti-Al-V-Mo-Nb-Zr合金[J]. 材料研究学报, 2023, 37(4): 308-314.
[13] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[14] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[15] 赵云梅, 赵洪泽, 吴杰, 田晓生, 徐磊. 热处理对粉末冶金Inconel 718合金TIG焊接的组织和性能的影响[J]. 材料研究学报, 2023, 37(3): 184-192.