Please wait a minute...
Chinese Journal of Materials Research  2015, Vol. 29 Issue (12): 895-903    DOI: 10.11901/1005.3093.2015.12.895
Orginal Article Current Issue | Archive | Adv Search |
Effect of Applied Voltage on Performance of Anodic Oxidation Films of TiO2 on TC4 Alloy
Jikang YAN1,2,Gang YANG1,**(),Wanxia TANG1,2,Yunfeng WU1,Shuming FANG1,Zhe SHI3
1. Kunming Metallurgical Research Institute, Kunming 650031, China
2. Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
3. Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
Cite this article: 

Jikang YAN,Gang YANG,Wanxia TANG,Yunfeng WU,Shuming FANG,Zhe SHI. Effect of Applied Voltage on Performance of Anodic Oxidation Films of TiO2 on TC4 Alloy. Chinese Journal of Materials Research, 2015, 29(12): 895-903.

Download:  HTML  PDF(5738KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Anodic oxidation films of TiO2 were prepared on titanium alloys Ti-6Al-4V(TC4) in an electrolyte system of oxalate, silicate and phosphate hybrid by means of anodic oxidation with TC4 as anode and stainless steel as cathode. Then the crystallographic structure, three-dimensional topography, microstructure and bioactivity of the prepared TiO2 films were characterized by means of X-ray diffractometer, X-ray photoelectron spectroscopy, AFM and scanning electron microscope etc. The results show that the applied voltage has almost no effect on the crystal structure of TiO2 films which are amorphous. There exist certain amount of pores and convex particles with ca.1.3 μm in diameter on the surface of rough TiO2 film prepared by an applied voltage of 30 V. With the increasing applied voltage, the convex particles on TiO2 films are slowly dismissed due to the field assisted dissolution. There are many nanopores of ca. 240 nm in diameter on the films without convex particles when the applied voltage is 100 V. There are many hydroxyls and micro/nano structures on the surface of anodic oxidation films on TC4 titanium alloy, which is useful for the enhancement of bioactivities and bone growth characteristics of the formed TiO2 oxide films.

Key words:  inorganic non-metallic materials      TC4 titanium alloy      anodic oxidation      surface treatment      TiO2 oxide film     
Received:  05 December 2014     
Fund: *Supported by National Natural Science Foundation of China No.51362017 and the Major Science and Technology Projects in Yunnan Province No.2012ZE008

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.12.895     OR     https://www.cjmr.org/EN/Y2015/V29/I12/895

Fig.1  XRD spectra of films on TC4 by anode oxidation at different oxidation voltage
Chemical state H2O —OH Ti—O
Area 311 13166 739
Position/eV 533.7 531.53 529.57
FWHM/eV 1.37 2.42 1.66
Atomic percent /% 2.19 92.61 5.20
Table 1  Chemical state and atomic percent of O1s in anode oxidation films on TC4 at 80 V
Fig.2  XPS spectra of anode oxidation films on TC4 at 80 V
Fig.3  High-resolution XPS spectra of films on TC4
Fig.4  SEM images of surface of films on TC4 for different oxygen voltage, (a) 30 V, (b) 70 V, (c) 100 V
Fig.5  SEM images of pore structure of films on TC4, (a) 30 V, (b) 70 V, (c) 100 V
Fig.6  AFM images for 3D surface morphology of oxide films on TC4, (a) 30 V, (b)70 V, (c)100 V
Fig.7  Microstructure and chemical composition of oxide ceramic films on titanium alloy TC4 by anode oxidation at oxidation voltage 30 V, (a) second electron image and point analysis positions of EDS, (b) backscattered electron image and point analysis positions of EDS, (c) EDS of oxide titanium film, (d) EDS of precipitated phase on oxide titanium film
Element Chemical composition at 30 V Average chemical composition of film at different voltage
film bulged particles 30 V 70 V 100 V
OK 29.88 47.68 41.62 42.41 41.8
AlK 7.68 5.05 6.22 6.22 6.42
TiK 60.66 41.8 49.76 48.86 49.5
VK 1.79 2.31 1.38 1.48 1.38
SiK 1.94 1.03 1.03 0.45
NaK 1.23
PK 0.38
Table 2  Chemical composition of films on TC4 by anode oxidation (%, atomic fraction)
Fig.8  X-ray of anode oxidation TC4 implant-containing rabbit femora at 24 weeks after embedded in rabbit femora, (a) 30 V, (b)70 V, (c) 100 V
Fig.9  Surface structure and chemical composition of anode oxidation TC4 implant at 24 weeks after embedded in rabbit femora, (a) 30 V-SEM, (b) 70 V-SEM, (c) 100 V-SEM, (d) 30 V-EDS, (e) 70 V-EDS, (f) 100 V-EDS
1 R. Van Noort, Titanium: the implant material of today, Journal of Materials Science, 22(11), 3801(1987)
2 LU Xiong, FENG Bo, WENG Jie, LENG Yang, The effects of micro-and nano-structured biomaterial surfaces on osteogenetic-related cells, Materials China, 32(10), 611(2013)
2 (鲁雄, 冯波, 翁杰, 冷扬, 生物材料表面微纳结构对成骨相关细胞的影响, 中国材料进展, 32(10), 611(2013))
3 Xingping Fan, Bo Feng, Zhiyuan Liu, Jing Tan, Wei Zhi, Xiong Lu, Jianxin Wang, Jie Weng, Fabrication of TiO2 nanotubes on porous titanium scaffold and biocompatibility evaluation in vitro and in vivo, Journal of Biomedical Materials Research Part A, 100A(12), 3422(2012)
4 Ling Gao, Bo Feng, Jianxin Wang, Xiong Lu, Dali Liu, Shuxin Qu, Jie Weng, Micro/nanostructural porous surface on tanium and bioactivity, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 89(2), 335(2009)
5 Hsien-Te Chen, Chi-Jen Chung, Tsai-Ching Yang, I-Ping Chiang, Chin-Hsin Tang, Keh-Chang Chen, Ju-Liang He, Osteoblast growth behavior on micro-arc oxidized β-titanium alloy, Surface and Coatings Technology, 205(5), 1624(2010)
6 L. L. Hench, Biomaterial: a forecast for the future, Biomaterials, 19(4), 1419(1998)
7 Chikara Ohtsuki, Hirohisa Iida, Satoshi Hayakawa, Akiyoshi Osaka, Bioactivity of titanium treated with hydrogen peroxide solutions containing metal chlorides, Journal of Biomedical Materials Research, 35(1), 39(1997)
8 Xiao-Xiang Wang, Satoshi Hayakawa, Kanji Tsuru, Akiyoshi Osaka, Bioactive titania-gel layers formed by chemical treatment of Ti substrate with a H2O2/HCl solution, Biomaterials, 23(5), 1353(2002)
9 X. X. Wang, S. Hayakawa, K. Tsuru, A Osaka, A comparative study of in vitro apatite deposition on heat-, H2O2-, and NaOH-treated titanium surfaces, Journal of Biomedical Materials Research, 54(2), 172(2001)
10 WANG Xiaohong, CAO Yang, ZHANG Li, CAO Xianying, JIN Chunyang, CAO Feng, Alkali and thermal treatment of titanium and its effect on the bioactivity, Journal of Functional Materials, 44(2), 275(2013)
10 (王小红, 曹阳, 张利, 曹献英, 金春阳, 操风, 碱热处理对钛表面生物活性的影响, 功能材料, 44(2), 275(2013))
11 Karla S. Brammer, Christine J. Frandsen, Sungho Jin, TiO2 nanotubes for bone regeneration, Trends in Biotechnology, 30(6), 315(2012)
12 Sepideh Minagar, Christopher C. Berndt, James Wang, Elena Ivanova, Cuie Wen, A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces, Acta Biomaterialia, 8(8), 2875(2012)
13 K. S. Brammer, S. Oh, C. J. Cobb, L. M. Bjursten, H. van der Heyde, Jin S, Improved bone-forming functionality on diameter-controlled TiO2 nanotube surface, Acta Biomaterialia, 5(8), 3215(2009)
14 LI Weiping, SHI Ping, Preparation and its forming mechanism of micron-dimensional porous TiO2 films on the surface of pure titanium, Rare Metal Materials and Engineering, 37(12), 2253(2008)
14 (李维平, 石萍, 纯钛表面微米级多孔TiO2薄膜的制备及形成机制, 稀有金属材料与工程, 37(12), 2253(2008))
15 Bangcheng Yang, Masaiki Uchida, Hyun-Min Kim, Preparation of bioactive titanium metal via anodic oxidation treatment, Biomaterials, 25(6), 1003(2004)
16 Neide K. Kuromoto, Renata A. Simão, Gloria A.Soares, Titanium oxide films produced on commercially pure titanium by anodic oxidation with different voltages, Materials Characterization, 58(2), 114(2007)
17 LIU Minghui, WENG Dun, CAI Jianping, ZHANG Xiaoyun, Study of structure and performance of anti-wear anodizing coating of titanium alloys, Journal of Materials Engineering, (12), 72(2009)
17 (刘明辉, 翁端, 蔡健平, 张晓云, 钛合金耐磨阳极氧化膜层结构和性能研究, 材料工程, (12), 72(2009))
18 MA Yaqin, YANG Chuang, Study of anodic oxide thick film on Ti6A14V alloy, Manufacturing Automation, 34(18), 29(2012)
18 (马亚芹, 杨闯, Ti6A14V合金厚膜阳极氧化工艺研究, 制造业自动化, 34(18), 29(2012))
19 DENG Shuhao, YI Danqing, LIN Shuangping, ZHOU Lingling, Study on direct current anodizing technology for titanum, Plating & Finishing, 28(5), 15(2006)
19 (邓姝皓, 易丹青, 林双平, 周玲伶, 钛的直流阳极氧化工艺研究, 电镀与精饰, 28(5), 15(2006))
20 YI Xiaohong, FAN Zhanguo, ZHANG Jinglei, LI Fenghua, TIAN Ang, Experimental study of preparation of TiO2 porous films on the surface of TC4 titanium alloy by anodic oxidation, Journal of Materials Engineering, 3, 38(2010)
20 (衣晓红, 樊占国, 张景垒, 李凤华, 田昂, TC4钛合金表面阳极氧化制备TiO2多孔膜的实验研究, 材料工程, 3, 38(2010))
21 WEI Dan, XIA ZHengbin, XING Junheng, WANG Yingying, ZHONG Li, Formation and crystallization characteristics of anodic oxide film on pure titanium in potentiostatic mode, Journal of South China University of Technology(Natural Science Edition), 40(3), 30(2012)
21 (魏丹, 夏正斌, 邢俊恒, 王莹莹, 钟理, 恒电位模式下纯钛阳极氧化膜的形成及结晶特性, 华南理工大学学报: 自然科学版, 40(3), 30(2012))
22 H. Perron, J. Vandenborre, C. Domain, R. Drotb, J. Roques, E. Simoni, J.-J. Ehrhardt, H. Catalette, Combined investigation of water sorption on TiO2 rutile (110) single crystal face: XPS vs. periodic DFT, Surface Science, 601(2), 518(2007)
23 YU Jiaguo, ZHAO Xiujian, Hydrophilicity and photocatalytic activity of self-cleaning porous TiO2 thin films on glass, Chemical Journal of Chinese Universities, 21(9), 1437(2000)
23 (余家国, 赵修建, 多孔TiO2薄膜自洁净玻璃的亲水性和光催化活性, 高等学校化学学报, 21(9), 1437(2000))
24 J. Takebe, S. Itoh, J. Okada, K. Ishibashi, Anodic oxidation and hydrothermal treatment of titanium results in a surface that causes increased attachment and altered cytoskeletal morphology of rat bone marrow stromal cells in vitro, Journal of Biomedical Materials Research, Part A, 51(3), 398(2000)
25 ZHANG Xiangchao, YANG Huaming, Effect of doping Ni2+ on microstructure and hydrophilic properties of TiO2 nanocomposite film, Journal of Central South University (Science and Technology), 43(7), 2554(2012)
25 (张向超, 杨华明, Ni2+掺杂TiO2薄膜微观结构及亲水性能, 中南大学学报(自然科学版), 43(7), 2554(2012))
26 Tang Wanxia, Yan Jikang, Yang Gang, Gan Guoyou, Du Jinghong, Zhang Jiamin, Liu Yichun, Shi Zhe, Yi Jianhong, Effect of electrolytic solution concentrations on surface hydrophilicity of micro-arc oxidation ceramic film based on Ti6Al4V titanium alloy, Rare Metal Materials and Engineering, 43(12), 2883(2014)
27 WU Jinming, Hayakawa Satoshi, Tsuru Kanji, Osaka Akiyoshi, Bioceramic coatings on titanium surfaces, Journal of The Chinese Ceramic Society, 31(7), 692(2003)
27 (吴进明, 早川聡, 都留寛治, 尾坂明義, 钛金属表面生物陶瓷涂层研究的现状, 硅酸盐学报, 31(7), 692(2003))
28 Johan Forsgren, Fredrik Svahn, Tobias Jarmar, Håkan Engqvist, Formation and adhesion of biomimetic hydroxyapatite deposited on titanium substrates, Acta Biomaterialia, 3(6), 980(2007)
29 LIU Jingxiao, YANG Dazhi, XU Jiujun, CHEN Jihua, CAI Yingji, Surface modification of biomedical NiTi alloy by ion beam synthesizing TiO2 film, Chinese Journal of Materials Research, 15(4), 444(2001)
29 (刘敬肖, 杨大智, 徐久军, 陈吉华, 蔡英骥, 离子束合成TiO2薄膜对医用NiTi合金表面的改性, 材料研究学报, 15(4), 444(2001))
30 CAO Alin, ZHANG Shengtao, ZHU Qingjun, HOU Baorong, The electrochemical oscillation behavior of aluminium anodizing at constant current, Journal of Functional Materials, 40(S), 460(2009)
30 (曹阿林, 张胜涛, 朱庆军, 侯保荣, 铝恒流阳极氧化过程中的电化学振荡研究, 功能材料, 40(S), 460(2009))
31 TAO Haijun, TAO Jie, WANG Ling, WANG Wei, Fabrication of nano-porous TiO2 films on pure titanium and its alloy, Journal of Nanjing University of Aeronautics & Astronautics, 37(5), 597(2005)
31 (陶海军, 陶杰, 王玲, 王炜, 纯钛及其合金表面纳米多孔TiO2膜的制备研究, 南京航空航天大学学报, 37(5), 597(2005))
32 GUO Zhijun, ZHOU Bin, GAO Qin, WANG Lijun, HU Pan, LI Yubao, ZHANG Li, Influences of anodization processing factors on the morphology and property of TiO2 nanotube arrays, Journal of Functional Materials, 45(6), 06111(2014)
32 (郭志君, 周斌, 高琴, 王立军, 胡盼, 李玉宝, 张利, 阳极氧化工艺参数对TiO2纳米管形貌和性能的影响, 功能材料, 45(6), 06111(2014))
33 WANG Pu, HE Daihua, LIU Ping, LIU Xinkuan, ZHAO Jun, CHEN Bingyu, Influence of anodic oxidation on hydroxyapatite-TiO2 coating deposited on Ti6Al4V alloy, Chinese Journal of Materials Research, 28(12), 887(2014)
33 (王朴, 何代华, 刘平, 刘新宽, 赵君, 陈冰玉, 阳极氧化对钛合金表面HA-TiO2复合涂层的影响, 材料研究学报, 28(12), 887(2014))
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] WANG Wei, ZHOU Shanqi, GONG Penghui, ZHANG Haoze, SHI Yaming, WANG Kuaishe. Effect of Anneal Treatment on Microstructure, Texture and Mechanical Properties of TC4 Alloy Plates[J]. 材料研究学报, 2023, 37(1): 70-80.
[12] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
No Suggested Reading articles found!