|
|
Constitutive Behavior of Bimodal Nanocrystalline Materials |
Yingguang LIU( ),Rongyuan JU,Huijun LI,Guangyi ZHAO |
School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China |
|
Cite this article:
Yingguang LIU,Rongyuan JU,Huijun LI,Guangyi ZHAO. Constitutive Behavior of Bimodal Nanocrystalline Materials. Chinese Journal of Materials Research, 2015, 29(12): 889-894.
|
Abstract Bimodal nanocrystalline (BNC) materials composed of coarse grains (CG) and nanocrystalline grains (NG), have both high strength and good ductility. In this paper, a new constitutive model was proposed by using Taylor strength theory and the Johnson-Cook modelto analyze the effect of grain size and nano-cracks on the constitutive/failure behavior of BNC materials. Numerical calculations have been carried out according to the model. It was found that the prediction result is in good agreement with experimental data. It can be concluded from the calculations that in BNC materials, (1) NC matrix can provide high strength, whereas CG can induce strain hardening to enhance its ductility, (2) the existence of nano-cracks does not lead to materials failure but a positive effect on strain hardening.
|
Received: 12 May 2015
|
Fund: *Supported by National Natural Science Foundation of China No.51301069, National Natural Science Foundation of Hebei Province No.E2014502073 and Fundamental Research Funds for the Central Universities No.2014MS114 |
1 | M. A. Meyers, A. Mishra, D. J. Benson, Mechanical properties of nanocrystalline materials, Prog. Mater Sci., 51, 427(2006) | 2 | C. C. Koch, D. G. Morris, K. Lu, A. Lnoue, Ductility of nanostructured materials, MRS Bull., 24, 54(1999) | 3 | G. He, J. Eckert, W. Loser, L. Schultz, Novel Ti-base nanostructure-dendrite composite with enhanced plasticity, Nat. Mater., 2, 33(2002) | 4 | M. Dao, L. Lu, R. J. Asaro, J. T. M. D. Hosson, E. Ma, Toward a quantitative understanding of mechanical behavior of nanocrystalline metals, Acta Mater., 55, 4041(2007) | 5 | Y. Wang, M. Chen, F. Zhou, E. Ma, High tensile ductility in a nanostructured metal, Nature, 419, 912(2002) | 6 | X. X. Shen, J. S. Lian, Z. H. Jiang, Q. Jiang, High strength and high ductility of electrodeposited nanocrystalline Ni with a broad grain size distribution, Mater. Sci. Eng., A, 487, 410(2008) | 7 | G. J. Fan, H. Choo, P. K. Liaw, E. J. Lavernia, Plastic deformation and fracture of ultrafine-grained Al-Mg alloys with a bimodal grain size distribution, Acta Mater., 54, 1759(2006) | 8 | B. Q. Han, E. J. Lavernia, F. A. Mohamed, Mechanical properties of nanostructured materials, Rev Adv Mater Sci, 9, 1(2005) | 9 | B. Q. Han, J. Y. Huang, Y. T. Zhu, E. J. Lavernia, Strain rate dependence of properties of cryomilled bimodal 5083 Al alloys, Acta Mater., 54, 3015(2006) | 10 | B. Q. Han, E. J. Lavernia, Z. Lee, S. Nutt, D. Witkin, Deformation behavior of bimodal nanostructured 5083 Al alloys, Metall. Mater. Trans. A, 36, 957(2005) | 11 | I. A. Ovid’ko, A. G. Sheinerman, Ductile vs. brittle behavior of pre-cracked nanocrystalline and ultrafine-grained materials, Acta Mater., 58, 5286(2010) | 12 | L. L. Zhu, S. Q. Shi, K. Lu, J. Lu, A statistical model for predicting the mechanical properties of nanostructured metals with bimodal grain size distribution, Acta Mater., 60, 5762(2012) | 13 | L. L. Zhu, J. Lu, Modelling the plastic deformation of nanostructured metals with bimodal grain size distribution, Int. J. Plast., 30, 166(2012) | 14 | Y. G. Liu, J. Q. Zhou, D. Hui, A strain-gradient plasticity theory of bimodal nanocrystalline materials with composite structure, Composites Part B, 43, 249(2012) | 15 | V. L. Tellkamp, A. Melmed, E. J. Lavernia, Mechanical Behavior and Microstructure of a Thermally Stable Bulk Nanostructured Al Alloy, Metall. Mater. Trans. A, 32, 2335(2001) | 16 | S. Billard, J. P. Fondere, B. Bacroix, G. F. Dirras, Macroscopic and microscopic aspects of the deformation and fracture mechanisms of ultrafine-grained aluminum processed by hot isostatic pressing, Acta Mater., 54, 411(2006) | 17 | U. F. Kocks, H. Mecking, Physics and phenomenology of strain hardening: the FCC case, Prog. Mater. Sci., 48, 171(2003) | 18 | L. Capolungo, C. Jochum, M. Cherkaoui, J. Qu, Homogenization method for strength and inelastic behavior of nanocrystalline materials, Int. J. Plast., 21, 67(2005) | 19 | Y. G. Liu, J. Q. Zhou, L. Wang, S. Zhang, Y. Wang, Grain size dependent fracture toughness of nanocrystalline materials, Mater. Sci. Eng. A, 528, 4615(2011) | 20 | Y. G. Liu, J. Q. Zhou, T. D. Shen, Effect of nano-metal particles on the fracture toughness of metal-ceramic composite, Mater. Des., 45, 67(2013) | 21 | J. Trajkovski, R. Kunc, V. Pepel, I. Prebil, Flow and fracture behavior of high-strength armor steel PROTAC 500, Mater. Des., 66, 37(2015) | 22 | D. N. Zhang, Q. Q. Shangguan, C. J. Xie, F. Liu, A modified Johnson-Cook model of dynamic tensile behaviors for 7075-T6 aluminum alloy, J. Alloys Compd., 619, 186(2015) | 23 | H. Y. Zhan, G. Wang, D. Kent, M. Dargusch, Constitutive modelling of the flow behaviour of a β titanium alloy at high strain rates and elevated temperatures using the Johnson-Cook and modified Zerilli-Armstrong models, Mater. Sci. Eng., A, 612, 71(2014) | 24 | J. Frontan, Y. M. Zhang, M. Dao, J. Lu, F. Galvez, A. Jerusalem, Ballistic performance of nanocrystalline and nanotwinned ultrafine crystal steel, Acta Mater., 60, 1353(2012) | 25 | J. Q. Zhou, R. T. Zhu, Z. Z. Zhang, A constitutive model for the mechanical behaviors of bcc and fcc nanocrystalline metals over a wide strain rate range, Mater. Sci. Eng. A, 480, 419(2008) | 26 | X. Guo, R. Ji, G. J. Weng, L. L. Zhu, J. Lu, Micromechanical simulation of fracture behavior of bimodal nanostructured metals, Mater. Sci. Eng. A, 618, 479(2014) | 27 | R. T. Zou, D. W. He, X. K. Wei, R. C. Yu, T. C. Lu, X. H. Chang, S. M. Wang, L. Lei, Nanosintering mechanism of MgAl2O4 transparent ceramics under high pressure, Mater. Chem. Phys., 123, 529(2010) | 28 | H. P. Klug, L. E. Alexander, X-ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd ed., Wiley, New York(1974), p. 625 |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|