Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (7): 487-494    DOI: 10.11901/1005.3093.2018.357
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Electrochemical Performance of LiNi0.5Mn0.5-xCoxO2(0≤x≤0.12) Cathode Materials
Shengwen ZHONG1(), Huajun ZHANG1, Wenli YAO1,2(), Qian ZHANG1, Yukun FU1, Xiaodong TANG1
1 Jiangxi Key Laboratory of Power Battery and Material, School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
2 Jiangxi Reserach Institue of Tungsten and Rare Earths, Ganzhou 341000, China
Cite this article: 

Shengwen ZHONG, Huajun ZHANG, Wenli YAO, Qian ZHANG, Yukun FU, Xiaodong TANG. Preparation and Electrochemical Performance of LiNi0.5Mn0.5-xCoxO2(0≤x≤0.12) Cathode Materials. Chinese Journal of Materials Research, 2018, 32(7): 487-494.

Download:  HTML  PDF(5599KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Cathode materials of LiNi0.5Mn0.5-xCoxO2(0<x≤0.12) were synthesized via simple co-precipitation and high-temperature solid-state reaction processes. The prepared materials were characterized by SEM, XRD, EDS and XPS. Their electrochemical performance was examined by galvanostatic charge-discharge tests, electrochemical impedance spectroscopy. Results show that all of the doped samples have a typical α-NaFeO2 layered structure with partial substitution of Co-atom for Mn-atom in the crystal lattice. XPS analysis showed that there is oxygen deficiency in the doped materials and the valence states of Ni, Mn and Co were mainly +2, +4 and +3, respectively. It has been found that the Co-doped LiNi0.5Mn0.5O2 shows better cycling stability, rate capacity and low-temperature property than LiNi0.5Mn0.5O2 without Co doping. For cycled at 25oC in the voltage range of 2.75~4.35 V, the LiNi0.5Mn0.5-xCo0.12O2 delivered initial discharge specific capacity of 180.8 mAh·g-1 and kept capacity retention rate of 92.3% after 100 cycles. The discharge specific capacity for the corresponding electrode cycled at -20oC is about 66.3% of its initial discharge specific capacity cycled at 25oC.

Key words:  inorganic non-metallic materials      LiNi0.5Mn0.5-xCoxO2 cathode material      co-precipitation method      electrochemical impedance spectroscopy      low-temperature property      lithium-ion batteries     
Received:  04 November 2017     
ZTFLH:  TB221  
Fund: Supported by the National Natural Science Foundation of China (No. 51372104), Education Bureau of Jiangxi Province (No. GJJ160601), Doctoral Scientific Research Foundation of Jiangxi University of Science and Technology (No. jxxjbs16025), Finance and Education Plan of Ganzhou City (No. 197[2017]) and External Technological Cooperation of Jiangxi Province (No. 20123BDH80016)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.357     OR     https://www.cjmr.org/EN/Y2018/V32/I7/487

Fig.1  XRD patterns of LiNi0.5Mn0.5-xCoxO2
Co a/nm c/nm V×10-3/nm3 c/a I003/I104
x=0 0.28878 1.42859 103.17 4.9471 1.52
x=0.04 0.28853 1.42789 102.95 4.9488 1.65
x=0.08 0.28794 1.42665 102.44 4.9547 1.59
x=0.12 0.28746 1.42520 101.99 4.9579 1.43
Table 1  Lattice parameters of LiNi0.5Mn0.5-xCoxO2
Fig.2  SEM images of LiNi0.5Mn0.5-xCoxO2 (a) x=0, (b) x=0.04, (c) x=0.08, (d) x=0.12
Fig.3  EDS images of doping amount of 0.12 samples (a) SEM (b) O (c) Ni (d) Mn (e) Co
Element Mass fraction / % Atom fraction / %
Ni K 36.65 20.15
Mn K 24.84 14.60
Co K 8.48 4.65
Table 2  Elements content of doping amount of 0.12 samples
Fig.4  XPS images of doping samples (a) Mn2p, (b) Ni2p, (c) Co2p, (d) O1s
Fig.5  Cycle performance curves of LiNi0.5Mn0.5-xCoxO2 samples
Fig.6  Rate capacity of LiNi0.5Mn0.5-xCoxO2 cycle at different rates
Fig.7  Discharge efficiency curves of LiNi0.5Mn0.5-xCoxO2 cycled at -20℃ with 0.2C
Fig.8  Cycle voltammetry curve of LiNi0.5Mn0.5-xCoxO2
Fig.9  EIS pattern of LiNi0.5Mn0.5-xCoxO2 (a) EIS plots (b) the plots of -Z"~ω-1/2
[1] Li C D, Yao Z L, Li J, et al.Preparation and electrochemical performance of LaF3-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 as cathode Material for lithium-ion batteries[J]. Chin. J. Mater. Res ., 2017, 31(5): 394(李成冬, 姚志垒, 李举等. LaF3表面修饰Li[Li0.2Mn0.54Ni0.13Co0.13]O2的制备及其电化学性能[J]. 材料研究学报, 2017, 31(5): 394)
[2] Zhong S, Chen P, Yao W.Ni-rich layered oxide Li1.05(Ni0.7Mn0.3)O2 as a highly reversible cathode material for lithium-ion batteries[J]. ECS Electrochem. Lett ., 2015, 4(6): A45
[3] Goodenough J B, Kim Y.Challenges for rechargeable batteries[J]. J. Power Sources, 2010, 196(7): 6688
[4] Ariyoshi K, Ichikawa T, Ohzuku T.Structural change of LiNi0.5-Mn0.5O2 during charge and discharge in nonaqueous lithium cells[J]. J. Phys. Chem. Solids, 2008, 69: 1238
[5] Lu H Q, Wu F, Su Y F, et al.Electrochemical performance of LiNi0.5-Mn0.5O2 as cathode material for lithium-ion batteries prepared by oxalate co-precipitation method[J]. Acta Phys.-Chim. Sin ., 2010, 26(1): 51(卢华权, 吴锋, 苏岳锋等. 草酸共沉淀法制备锂离子电池正极材料LiNi0.5Mn0.5O2及其电化学性能[J]. 物理化学学报, 2010, 26(1): 51)
[6] Luo C Y, Li Z F, Peng W W, et al.First principles study on electronic structure of LixNi0.5Mn0.5O2 cathode material for lithium ion batteries[J]. Nonferrous Met. Sci. Eng ., 2016, 7(4): 45(罗垂意, 李之锋, 彭弯弯等. 锂离子电池正极材料LixNi0.5Mn0.5O2电子结构的第一性原理研究[J]. 有色金属与工程, 2016, 7(4): 45
[7] Yang X, Xia Y.The effect of oxygen pressures on the electrochemical profile of lithium/oxygen battery[J]. J. Solid State Electrochem ., 2010, 14(1): 109
[8] Johnson C S, Kim J S, Kropf A J, et al.Structural characterization of layered LixNi0.5Mn0.5O2 (0<x≤2) oxide electrodes for Li batteries[J]. Chem. Mater ., 2003, 15(37): 2313
[9] Li D, Sasaki Y, Kageyama M, et al.Structure, morphology and electrochemical properties of LiNi0.5Mn0.5-xCoxO2 prepared by solid state reaction[J]. J. Power Sources, 2005, 148(2): 85
[10] Ohzuku T, Makimura Y.Layered lithium insertion material of LiNiMnO2: A possible alternative to LiCoO2 for advanced lithium-ion batteries[J]. Chem. Lett ., 2001, 30(8): 744
[11] Sakamoto K, Hirayama M, Konishi H.et al.Structural changes in surface and bulk LiNi0.5Mn0.5O2 during electrochemical reaction on epitaxial thin-film electrodes characterized by in situ X-ray scattering[J]. Phys. Chem. Chem. Phys ., 2010, 12: 3815
[12] Li J, Wan L, Cao C.A high-rate and long cycling life cathode for rechargeable lithium-ion batteries: hollow LiNi0.5Mn0.5O2 nano/micro hierarchical microspheres[J]. Electrochim. Acta, 2016, 191: 974
[13] Kang S H, Kim J, Stoll M E, et al.Layered Li(Ni0.5-xMn0.5-xM2x′)O2 (M′=Co, Al, Ti; x=0, 0.025) cathode materials for Li-ion rechargeable batteries[J]. J. Power Sources, 2002, 112(1): 41
[14] Gwon H, Kim S W, Park Y U, et al.Ion-exchange mechanism of layered transition-metal oxides: case study of LiNi0.5Mn0.5O2[J]. Inorg. Chem ., 2014, 53: 8083
[15] Dou S, Wang W, Li H, et al.Synthesis and electrochemical performance of LiNi0.475Mn0.475Al0.05O2 as cathode material for lithium-ion battery from Ni-Mn-Al-O precursor[J]. J. Solid State Electrochem ., 2011, 15(4): 747
[16] Li D C, Noguchi H, Yoshio M.Electrochemical characteristics of LiNi0.5-xMn0.5-xCo2xO2(0<x≤0.1) prepared by spray dry method[J]. Electrochimica Acta, 2004, 50(2-3): 427
[17] Yoon W S, Balasubramanian M, Yang X Q, et al.Soft X-ray absorption spectroscopic study of a LiNi0.5Mn0.5O2 cathode during charge[J]. J. Electrochem. Soc ., 2004, 151(2): A246
[18] Dou S, Wang W, Synthesis and electrochemical properties of layered LiNi0.5-xMn0.5-xCo2xO2 for lithium-ion battery from nickel manganese cobalt oxide precursor[J]. J. Solid State Electrochem ., 2011, 15(2): 399
[19] Chen P, Mei W J, Zhong S W, et al.Effect of sintering atmosphere on electrochemical performance of cobalt free nickel rich LiNi0.7Mn0.3-O2 as cathode material[J]. Nonferrous Met. Sci. Eng ., 2015, 6(4): 54(陈鹏, 梅文捷, 钟盛文等. 烧结气氛对无钴镍基正极材料LiNi0.7Mn0.3O2性能的影响[J]. 有色金属与工程, 2015, 6(4): 54)
[20] Ohzuku T, Ueda A, Nagayama M.Electrochemistry and structural chemistry of LiNiO2(R3m) for 4 volt secondary lithium cells[J]. J. Electrochem. Soc ., 1993, 140(7): 1862
[21] Sun Y K, Lee B R, Noh H J, et al.A novel concentration-gradient Li[Ni0.83Co0.07Mn0.10]O2 cathode material for high-energy lithium-ion batteries[J]. J. Mater. Chem ., 2011, 21(27): 10108
[22] Wang Y, Zhang H, Chen W, et al.Gel-combustion synthesis and electrochemical performance of LiNi1/3Mn1/3Co1/3O2 as cathode material for lithium-ion batteries[J]. Rsc Advances, 2011, 4(70): 37148
[23] S. Zhong, M. Lai, W. Yao, Z. Li, Synthesis and electrochemical properties of LiNi0.8CoxMn0.2-xO2 positive-electrode material for lithium-ion batteries[J]. Electrochim. Acta, 2016, 212: 343
[24] Li L, Zhang X, Chen R, et al.Synthesis and electrochemical performance of cathode material Li1.2Co0.13Ni0.13Mn0.54O2 from spent lithium-ion batteries[J]. J. Power Sources, 2014, 249(3): 28
[25] Quinlan R A, Lu Y C, Yang S H, et al.XPS Studies of surface chemistry changes of LiNi0.5Mn0.5O2 electrodes during high-voltage cycling[J]. J. Electrochem. Soc ., 2013, 160(4): A669
[26] Yu C, Li G, Guan X, et al.Composites Li2MnO3·LiMn1/3Ni1/3Co1/3O2 optimized synthesis and applications as advanced high-voltage cathode for batteries working at elevated temperatures[J]. Electrochim. Acta, 2012, 81: 283
[27] Matsuda Y, Suzuki K, Hirayama M, et al.High-pressure synthesis of lithium-rich layered rock-salt Li2(Mn3/8Co1/4Ni3/8)O3-x for lithium battery cathodes[J]. Solid State Ionics, 2014, 262: 88
[28] Huang C K, Sakamoto J S, Wolfenstine J, et al.The limits of low-temperature performance of Li-ion cells[J]. J. Electrochem. Soc ., 2000, 147(8): 2893
[29] Smart M C, Ratnakumar B V, Surampudi S.Use of organic esters as cosolvents in electrolytes for lithium-ion batteries with improved low temperature performance[J]. J. Electrochem. Soc ., 2002, 149: A361
[30] Zhang S S, Xu K, Jow T R.The low temperature performance of Li-ion batteries, J. Power Sources[J]. 2003, 115(1): 137
[31] Lu Z, Beaulieu L Y, Donaberger R A, et al.Synthesis, structure, and electrochemical behavior of Li[NixLi1/3-2x/3Mn2/3-x/3]O2[J]. J. Electrochem. Soc ., 2002, 149(6): A778
[32] Martha S K, Nanda J, Veith G M, et al.Surface studies of high voltage lithium rich composition: Li1.2Mn0.525Ni0.175 Co0.1O2[J]. J. Power Sources, 2012, 216(11): 179
[33] Chen Y, Chen Z, Xie K.Effect of annealing on the first-cycle performance and reversible capabilities of lithium-rich layered oxide cathodes[J]. J. Phys. Chem. C, 2014, 118(22): 11505
[34] Liu J, Reeja-Jayan B, Manthiram A.Conductive surface modification with aluminum of high capacity layered Li[Li0.2Mn0.54Ni0.13-Co0.13]O2 cathodes[J]. J. Phys. Chem. C, 2010, 114(20): 9528
[35] Liu J, Jiang R, Wang X, et al.The defect chemistry of LiFePO4, prepared by hydrothermal method at different ph values[J]. J. Power Sources, 2009, 194(1): 536
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] LIU Dongxuan, CHEN Ping, CAO Xinrong, ZHOU Xue, LIU Ying. Preparation and Electrochemical Properties of Bowl-shaped C@FeS2@NC Composites[J]. 材料研究学报, 2023, 37(1): 1-9.
[12] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
No Suggested Reading articles found!