Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (7): 495-501    DOI: 10.11901/1005.3093.2018.423
ARTICLES Current Issue | Archive | Adv Search |
Metal Catalyst for Preparation of Multiscale Reinforcement of Carbon Nanotubes on Carbon Fibers
Yanxiang WANG1, Shunsheng SU1(), Wenxin FAN1,2, Jianjie QIN1, Ce QU1, Chengguo WANG1
1 Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China
2 School of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
Cite this article: 

Yanxiang WANG, Shunsheng SU, Wenxin FAN, Jianjie QIN, Ce QU, Chengguo WANG. Metal Catalyst for Preparation of Multiscale Reinforcement of Carbon Nanotubes on Carbon Fibers. Chinese Journal of Materials Research, 2018, 32(7): 495-501.

Download:  HTML  PDF(4459KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Carbon nanotubes (CNTs)-grafted carbon fibers, which can significantly improve the tensile strength of carbon fibers, were successfully prepared via chemical vapor deposition (CVD) process. It was found that the metal catalyst composition had a little influence on the morphology of catalyst particles and tensile strength of carbon fibers after the reduction of catalyst precursor, but significantly affected the growth rate of CNTs and the corresponding tensile strength of CNT-grafted carbon fibers. High catalyst activity not only contributes to the high-efficiency for the synthesis of CNTs, but also facilitate the healing of damages on surface and strengthening of carbon fibers. Fe-Cu and Ni-Cu catalysts were found to be high efficient catalyst for CNTs growth. Therewith, the tensile strength of the CNTs grafted carbon fiber prepared in the presence of catalysts of Fe-Cu and Ni-Cu increased by 12.26% and 12.80% respectively.

Key words:  inorganic non-metallic materials      metal catalyst      carbon nanotubes      carbon fibers      tensile strength      CNT-grafted carbon fibers     
Received:  23 January 2018     
ZTFLH:  TQ342.31  
Fund: Supported by Natural Science Foundation Project of Shangdong (Nos. ZR2017MEM011 & 2018GGX104022) and National Natural Science Foundation of China (No. 51573087)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.423     OR     https://www.cjmr.org/EN/Y2018/V32/I7/495

Fig.1  Flow chart for the fabrication of CNT-grafted carbon fibers
Fig.2  Morphology of catalyst particles coated on carbon fibers (a) Fe, (b) Fe-Cu, (c) Fe2Co, (d) Fe2Ni used as catalyst and (e) High-power microscope for the catalyst granule of Fe
Fig.3  Effect of the concentration of catalyst precursor on (a) the amount of catalyst and (b) the diameters of catalyst particles and CNTs/CNFs deposited on the surface of carbon fibers
Fig.4  Tensile strength, Roman spectra and ID/IG of carbon fibers coated with different catalyst particles (a) tensile strength, (b) Roman spectra, (c) ID/IG
Fig.5  Morphology of CNT-grafted carbon fibers produced using different catalyst (a) Fe, (b) Fe-Cu, (c) Fe2Co, (d) Fe2Ni
Fig.6  Tensile strength of CNT-grafted carbon fibers produced using different catalyst (a) and effect of metal catalyst on the tensile strength of carbon fiber under different temperature (b)
Fig.7  Tensile strength and morphology of CNT-grafted carbon fibers produced using different catalyst
[1] Sharma S P, Lakkad S C.Effect of CNTs growth on carbon fibers on the tensile strength of CNTs grown carbon fiber-reinforced polymer matrix composites[J]. Compos. Part A, 2011, 42: 8
[2] Mathur R B, Chatterjee S, Singh B P.Growth of carbon nanotubes on carbon fibre substrates to produce hybrid/phenolic composites with improved mechanical properties[J]. Compos. Sci. Technol ., 2008, 68(7-8):1608
[3] Sharma S P, Lakkad S C.Compressive strength of carbon nanotubes grown on carbon fiber reinforced epoxy matrix multi-scale hybrid composites[J]. Surf. Coat. Technol ., 2010, 205(2): 350
[4] Agnihotri P, Busu S, Kar K K.Effect of carbon nanotube length and density on the properties of carbon nanotube-coated carbon fiber/polyester composites[J]. Carbon, 2011, 49(9): 3098
[5] Davis D C, Wilkerson J W, Zhu J, et al.Improvements in mechanical properties of a carbon epoxy composites using nanotubes science and technology[J]. Compo. Struct ., 2010, 92(11): 2653
[6] An Q, Rider A N, Thostenson E T.Electrophoretic deposition of carbon nanotubes onto carbon-fiber fabric for production of carbon/epoxy composites with improved mechanical properties[J]. Carbon, 2012, 50(11): 4130
[7] Zhao F, Huang Y, Liu L.Formation of a carbon fiber/polyhedral oligomeric silsesquioxane/carbon nanotube hybrid reinforcement and its effect on the interfacial properties of carbon fiber/epoxy composites[J]. Carbon, 2011, 49(8): 2624
[8] Fan W X, Wang Y X, Chen J Q, et al.Controllable growth of uniform carbon nanotubes/carbon nanofibers on the surface of carbon fibers[J]. RSC adv ., 2015, 5: 75735
[9] Steiner S A, Li R, Wardle B L.Circumventing the mechanochemical origins of strength loss in the synthesis of hierarchical carbon fibers[J]. ACS Appl. Mater. Interfaces, 2013, 5(11): 4892
[10] An F, Lu C X, Li Y H, et al.Preparation and characterization of carbon nanotube-hybridized carbon fiber to reinforce epoxy composite[J]. Mater. Des ., 2012, 33: 197
[11] Cartwright R, Esconjauregui S, Hardeman D, et al.Low temperature growth of carbon nanotubes on tetrahedral amorphous carbon using Fe-Cu catalyst[J]. Carbon, 2015, 81: 639
[12] De Greef N, Zhang L M, Magrez A, et al.Direct growth of carbon nanotubes on carbon fibers: Effect of the CVD parameters on the degradation of mechanical properties of carbon fibers[J]. Diam. Relat. Mater ., 2015, 51: 39
[13] Liu J, Tian Y L, Chen Y J, et al.Interfacial and mechanical properties of carbon fibers modified by electrochemical oxidation in (NH4HCO3)/(NH4)2C2O4·H2O aqueous compound solution[J]. Appl. Surf. Sci ., 2010, 256(21): 6199
[14] Hebert C, Ruffinatto S, Eon D, et al. A composite material made of carbon nanotubes partially embedded in a nanocrystalline diamond film [J].2013, Carbon, 52: 408
[15] Hughes J D H. The carbon fibre/epoxy interface-a review[J]. Compos. Sci. Technol ., 1991, 41(1): 13
[16] Qiu J, Zhang C, Wang B, et al.Carbon nanotube integrated multifunctional multiscale composites[J]. Nanotechnology, 2007, 18(21): 275708
[17] Kim K J, Kim J, Yu W R, et al. Improved tensile strength of carbon fibers undergoing catalytic growth of carbon nanotubes on their surface [J].2013, Carbon, 54: 258
[18] Zhao Y H, Ma Z K, Song H H, et al.Synthesis and characterization of carbon fibers multi-scale reinforcement with grafted graphene oxide[J]. Chin. J. Mater. Res ., 2016, 30(3): 229(赵永华, 马兆昆, 宋怀河等. 碳纤维/氧化石墨烯多尺度增强体的制备与表征[J]. 材料研究学报, 2016, 30(3): 229)
[19] Zhang L M, De Greef N, Kalinka G, et al.Carbon nanotube-grafted carbon fiber polymer composites: Damage characterization on the micro-scale[J]. Compos. Part B-Eng, 2017, 126: 202
[20] Zheng L B, Wang Y X, Qin J J, et al.Scalable Manufacturing of Carbon Nanotubes on Continuous Carbon Fibers Surface from Chemical Vapor Deposition[J]. Vacuum, 2018, 152: 84
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] QI Yunchao, FANG Guodong, ZHOU Zhengong, LIANG Jun. In-plane Tensile Strength for Needle-punched Composites Prepared by Different Needling Processes[J]. 材料研究学报, 2023, 37(1): 21-28.
[12] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
No Suggested Reading articles found!