Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (12): 881-886    DOI: 10.11901/1005.3093.2017.106
Current Issue | Archive | Adv Search |
Preparation and Property of a Hierarchical Porous Carbon Material
Yuan JIAO1,2, Lili SUN1,2, Peng GUO1, Aiying WANG1()
1 Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
Cite this article: 

Yuan JIAO, Lili SUN, Peng GUO, Aiying WANG. Preparation and Property of a Hierarchical Porous Carbon Material. Chinese Journal of Materials Research, 2017, 31(12): 881-886.

Download:  HTML  PDF(3410KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Porous carbon materials were fabricated by a dual-templating method, using non-woven polyethylene terephthalate (PET) fabrics as the hard template and Pluronic F127 as the soft template, with soluble phenolic resol as the carbon precursor. There exists meso pores of 4~6 nm resulted from decomposition of F127 and macro pores of 10~15 μm resulted from decomposition of PET fabric in the prepared hierarchical porous materials. The conductivity can be reduced from 1.63×104 Ωm to 3.13×10-3 Ωm by properly adjusting the carbonization process parameter. This porous carbon sheet can be directly used as an electrode for Li-ion battery without any conductive additive or binder, and has very stable capacity.

Key words:  inorganic non-metallic materials      dual-templating      porous carbon material      Li-ion battery     
Received:  24 January 2017     
ZTFLH:  TB321  
Fund: Supported by National Natural Science Foundation of China (No. 51522106), Key Research and Development Program of Zhejiang Province (No. 2017C01001)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.106     OR     https://www.cjmr.org/EN/Y2017/V31/I12/881

Samples m(F127)/g m(resol)/g Carbonization temperature/℃ Carbonization duration/min
#1 0.5 1 900 60
#2 1 1 900 60
#3 2 1 900 60
#4 0.5 1 600 1
#5 0.5 1 600 60
Table 1  Parameters of different porous carbon materials
Fig.1  SEM and optical (insert) images of pristine PET sheet (a), SEM and TEM images of porous carbon materials numbered (b)(d) #1, (c) (e) #2, and (f) #3; (g) and (h) show local profiles of (d, e)
Fig.2  Resistivity of porous carbon materials made from different carbonization processes
Fig.3  Raman spectra (a),G peak position and ID/IG changes (b) of porous carbon materials prepared by using different carbonization process
Fig.4  C-V curves for the first 5 cycles at 0.1C (a) and C-C curve for 300 cycles (b)
[1] Ji X, Nazar LF.Advances in Li-S batteries[J]. J. Mater. Chem., 2010, 20(44): 9821
[2] Xu G, Ding B, Shen L, et al.Sulfur embedded in metal organic framework-derived hierarchically porous carbon nanoplates for high performance lithium-sulfur battery[J]. J. Mater. Chem. A., 2013, 1(14): 4490
[3] Jayaprakash N, Shen J, Moganty SS, et al.Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries[J]. Angew. Chem., Int. Ed. Engl., 2011, 50(26): 5904
[4] Wenzel S, Hara T, Janek J, et al.Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies[J]. Energy Environ. Sci., 2011, 4(9): 3342
[5] Xu Y, Zhu Y, Liu Y, et al.Electrochemical performance of porous carbon/tin composite anodes for sodium-ion and lithium-ion batteries[J]. Adv. Energy Mater., 2013, 3(1): 128
[6] Magasinski A, Dixon P, Hertzberg B, et al.High-performance lithium-ion anodes using a hierarchical bottom-up approach[J]. Nat. Mater., 2010, 9(4): 353
[7] Chai G S, Shin I S, Yu J S.Synthesis of ordered, uniform, macroporous carbons with mesoporous walls templated by aggregates of polystyrene spheres and silica particles for use as catalyst supports in direct methanol fuel cells[J]. Adv. Mater., 2004, 16(22): 2057
[8] Deng Y, Liu C, Yu T, et al.Facile synthesis of hierarchically porous carbons from dual colloidal crystal/block copolymer template approach[J]. Chem. Mater., 2007, 19(13): 3271
[9] Su F, Lv L, Zhao X.Synthesis of nanostructured porous carbon[J]. Int. J. Nanosci., 2005, 4(02): 261
[10] Huang Y, Cai H, Feng D, et al.One-step hydrothermal synthesis of ordered mesostructured carbonaceous monoliths with hierarchical porosities[J]. Chem. Commun., 2008(23): 2641
[11] Xue C, Tu B, Zhao D.Evaporation-induced coating and self-assembly of ordered mesoporous carbon-silica composite monoliths with macroporous architecture on polyurethane foams[J]. Adv. Funct. Mater., 2008, 18(24): 3914
[12] Meng Y, Gu D, Zhang F, et al.A family of highly ordered mesoporous polymer resin and carbon structures from organic-organic self-assembly[J]. Chem. Mater., 2006, 18(18): 4447
[13] Shimizu T.Self-assembled Nanomaterials II: Nanotubes[M]. Berlin: Springer Berlin Heidelberg, 2008
[14] Werner J G, Johnson S S, Vijay V, et al.Carbon-sulfur composites from cylindrical and gyroidal mesoporous carbons with tunable properties in lithium-sulfur batteries[J]. Chem. Mater., 2015, 27(9): 3349
[15] Matsumura Y, Wang S, Mondori J.Mechanism leading to irreversible capacity loss in Li ion rechargeable batteries[J]. J. Electrochem. Soc., 1995, 142(9): 2914
[16] Nan D.One dimensional porous carbon and Si/C anode materials for lithium ion batteries[D]. Beijing: Tsinghua University, 2014(楠顶. 锂离子电池自支撑一维多孔碳与硅碳复合负极材料研究[D]. 北京: 清华大学, 2014)
[17] Xing W, Dahn J R.Study of irreversible capacities for Li insertion in hard and graphitic carbons[J]. J. Electrochem. Soc., 1997, 144(4): 1195
[18] Tarascon J M, Armand M.Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359
[19] Chung S Y, Bloking J T, Chiang Y M.Electronically conductive phospho-olivines as lithium storage electrodes[J]. Nat. Mater., 2002, 1(2): 123
[20] Kinney C R.Studies on producing graphitizable carbons[A]. Proceedings of first and Second Conferences on Carbon[C]. New York, 1995
[21] Marchand A.,J. V. Zanchetta. Proprietes electroniques d'un carbone dope a l'azote[J]. Carbon, 1966, 3(4): 483
[22] Kim, Jung Dam, Jae-Seung Roh, Myung-Soo Kim. Effect of carbonization temperature on crystalline structure and properties of isotropic pitch-based carbon fiber[J]. carbon lett., 2017, 21: 51
[23] Kwon, Jin Heon, et al.Effect of carbonization temperature on electrical resistivity and physical properties of wood and wood-based composites[J]. Composites Part B, 2013, 46: 102
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!