Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (4): 269-276    DOI: 10.11901/1005.3093.2015.435
Orginal Article Current Issue | Archive | Adv Search |
Preparation and Corrosion Performance of Lanthanum Nitrate Conversion Coating on Hot-dip Galfan Steel
WU Xiaoxiao, KONG Gang, SUN Ziwen, CHE Chunshan**()
School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
Cite this article: 

WU Xiaoxiao, KONG Gang, SUN Ziwen, CHE Chunshan. Preparation and Corrosion Performance of Lanthanum Nitrate Conversion Coating on Hot-dip Galfan Steel. Chinese Journal of Materials Research, 2016, 30(4): 269-276.

Download:  HTML  PDF(2375KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Lanthanum nitrate conversion coating was prepared on a hot-dip Galfan steel by dipping in a passivation solution of La(NO3)3. The surface morphology, chemical composition and structure of the coating were characterized by scanning electron microscopy (SEM) with X-ray energy dispersive spectrometer (EDS), X-ray photoelectron spectroscopy (XPS) and atomic force microscope (AFM). The corrosion resistance of the conversion film coated steel was assessed by neutral salt spray tests (NSS), electrochemical polarization curve and electrochemical impedance spectroscopy (EIS). The results showed that the conversion coating was not uniform, which had grown preferentially on grain- and phase-boundaries as well as other active sites. The thickness of the coating increased, while cracks in the coating expanded gradually with the increasing dipping-time. The coating spall off after dipping for more than 30 min, and therewith the protective performance of the coating degraded. In comparison with the blank Galfan steel, the corrosion rate of the conversion film coated Galfan steel lowered down significantly.

Key words:  materials failure and protection      hot-dip Galfan      conversion coating      lanthanum salt      growth process      corrosion resistance     
Received:  07 July 2015     
ZTFLH:  TB304  
  TG174.4  
Fund: Supported by the International Lead and Zinc Study Group No.ILZRO/IZA//CN201212, and the Fundamental Reasearch Funds for the Central Universities No.2012ZM0011, and the Guangdong Provincial Research Project of the Ministry of Education No.2012B091100312
About author:  To whom correspondence should be addressed, Tel: (020)85511540, E-mail: wyccs1975@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.435     OR     https://www.cjmr.org/EN/Y2016/V30/I4/269

Fig.1  SEM images of Galfan coating treated in lanthanum salt bath for (a) 10 s; (b) 1 min; (c) 10 min; (d) 30 min; (e) 60 min
Analytical area Treatment time Zn Al O La
1 10 s 88.12 11.88 - -
2 1 min 72.01 13.82 13.71 0.46
3 1 min 49.58 12.05 36.22 2.15
4 10 min 49.52 7.71 39.34 3.43
5 10 min 16.04 2.54 68.91 12.50
6 30 min 34.07 1.57 54.07 10.29
7 60 min 8.96 1.07 72.92 17.05
8 60 min 89.05 10.95 - -
Table 1  EDS analysis results for the different micro squares in Fig.1 (%, atomic fraction)
Fig.2  XPS surface analysis of conversion film formed on Galfan coating with 1 min treatment
Fig.3  High resolution XPS spectra of Zn2p (a), La3d (b), Al2p (c), O1s (d)
Fig.4  XPS depth analysis profiles of four elements in Galfan coating with 1 min treatment
Fig.5  AFM micrographs of Lanthanum conversion coating formed after passivation treatment for (a) 10 s; (b) 1 min
Fig.6  NSS results of Galfan coating without and with passivation treatment for different time
Fig.7  Electrochemical polarization curves of Galfan coating without and with Lanthanum conversion treatment for different time in 5% NaCl solution
Sample Ecorr/V Rp/Ωcm2 Icorr/μAcm-2
Galfan -1.062 1546.3 5.430
10 s -1.068 2687.6 3.101
1 min -1.060 3494.0 2.242
10 min -1.041 56690.0 0.1178
30 min -1.052 22930.2 0.3530
60 min -1.077 9441.9 0.8021
Table 2  Electrochemical polarization parameters corresponding to Fig.7
Fig.8  EIS of Galfan coating without and with Lanthanum conversion treatment for different time in 5% NaCl solution, (a) Nyquist plots; (b) local amplification of Fig.8a
1 D. J. Penney, J. H. Sullivan, D. A. Worsley, Investigation into the effects of metallic coating thickness on the corrosion properties of Zn-Al alloy galvanising coatings, Ecs Transactions, 49(3), 1321(2007)
2 A. P. Yadav, H. Katayama, K. Noda, H. Masuda, A. Nishikata, T. Tsuru, Effect of Al on the galvanic ability of Zn-Al coating under thin layer of electrolyte, Electrochimica Acta, 52(7), 2411(2007)
doi: 10.1016/j.electacta.2006.08.050
3 F. Rosalbino, E. Angelini, D. Macciò, A. Saccone, S. Delfino, Application of EIS to assess the effect of rare earths small addition on the corrosion behaviour of Zn-5%Al (Galfan) alloy in neutral aerated sodium chloride solution, Electrochimica Acta, 54(4), 1204(2009)
doi: 10.1016/j.electacta.2008.08.063
4 LU Jintang, JIANG Aihua, CHE Chunshan, KONG Gang, Progress in research of hot-dipped Zn-Al alloying coating, Materials Protection, 41(7), 47(2008)
(卢锦堂, 江爱华, 车淳山, 孔纲, 热浸Zn-Al合金镀层的研究进展, 材料保护, 41(7), 47(2008))
5 S. Feliu, V. Barranco, XPS study of the surface chemistry of conventional hot-dip galvanised pure Zn, galvanneal and Zn-Al alloy coatings on steel, Acta Materialia, 51(18), 5413(2003)
doi: 10.1016/S1359-6454(03)00408-7
6 J. C. Zocoola, H. E. Townsend, A. R. Borzillo, J. B. Horton, Atmospheric corrosion behavior of aluminum-zinc alloy-coated steel, Astm Special Technical Publication, 646, 165(1978)
7 ZHANG Changqiao, ZHU Chengfu, YU Ping, MOU Shanliang, SUN Ying, The microstructure of Zn-5%Al hot dip coating and study on its corrosion resistant mechanism, Journal of Materials Engineering, 4, 24(2002)
(张长桥, 主沉浮, 于萍, 牟善良, 孙瑛, Zn-5%Al合金热浸镀层微结构及其防腐机理研究, 材料工程, 4, 24(2002))
8 XU Qiaoyu, WANG Haixia, JIANG Rui, Formation and corrosion resistance of titanium containing conversion film on hot-dip Galvanized steel, Chinese Journal of Materials Research, 28(7), 521(2014)
(许乔瑜, 王海霞, 姜瑞, 热浸镀锌层钛盐转化膜的制备和耐蚀性能, 材料研究学报, 28(7), 521(2014))
9 YANG Lihui, LI Junqing, YU Xiang, ZHANG Milin, Molybdate conversion coatings on AZ31 magnesium alloy, The Chinese Journal of Nonferrous Metals, 18(7), 1211(2008)
(杨黎晖, 李峻青, 于湘, 张密林, AZ31镁合金钼酸盐转化膜, 中国有色金属学报, 18(7), 1211(2008))
doi: 10.3321/j.issn:1004-0609.2008.07.007
10 L. Jiang, M. Wolpers, P. Volovitch, K. Ogle, An atomic emission spectroelectrochemical study of passive film formation and dissolution on galvanized steel treated with silicate conversion coatings, Surface & Coatings Technology, 206(13), 3151(2012)
doi: 10.1016/j.surfcoat.2012.01.016
11 KONG Gang, ZHANG Shuanghong, SUN Ziwen, CHE Chunshan, LU Jintang, Effect of size of silica powder on preparation of silicate conversion coatings on Galvanized steel, Chinese Journal of Materials Research, 28(6), 462(2014)
(孔纲, 张双红, 孙子文, 车淳山, 卢锦堂, 二氧化硅粉体粒度对硅酸盐转化膜制备的影响, 材料研究学报, 28(6), 462(2014))
doi: 10.11901/1005.3093.2013.940
12 G. Rossana, M. L. Abel, M. A. Baker, B. Dunn, J. F. Watts, The adsorption of an epoxy acrylate resin on aluminum alloy conversion coatings, International Journal of Adhesion and Adhesives, 31(7), 687(2011)
doi: 10.1016/j.ijadhadh.2011.06.010
13 ZHENG Runfeng, LIANG Haocheng, SHAO Lin, Study of composition and corrosion protection afforded by phytic acid conversion coatings applied to AZ91 magnesium alloy, Journal of Dalian University of Technology, 46(1), 16(2006)
(郑润芬, 梁浩成, 邵林, AZ91D镁合金植酸转化膜组成与耐腐蚀性能研究, 大连理工大学学报, 46(1), 16(2006))
14 LU Jintang, ZHANG Shuanghong, KONG Gong, CHE Chunshan, Composition and Corrosion resistance of molybdate/silane composite films on Galvanized steel, Journal of South China University of Technology (Natural Science Edition., 37(12), 12(2009)
(卢锦堂, 张双红, 孔纲, 车淳山, 镀锌钢上钼酸盐/硅烷复合膜的组成与耐蚀性, 华南理工大学学报: 自然科学版, 37(12), 12(2009))
doi: 10.3321/j.issn:1000-565X.2009.12.003
15 M. F. Montemor, W. Trabelsi, M. Zheludevich, M. G. S.Ferreira, Modification of bis-silane solutions with rare-earth cations for improved corrosion protection of galvanized steel substrates, Progress in Organic Coatings, 57(1), 67(2006)
doi: 10.1016/j.porgcoat.2006.06.009
16 S. H. Zhang, G. Kong, J. T. Lu, C. S. Che, L. Y. Liu, Growth behavior of lanthanum conversion coating on hot-dip galvanized steel, Surface & Coatings Technology, 259, 654(2014)
doi: 10.1016/j.surfcoat.2014.10.017
17 KONG Gang, WU Shuang, LIN Dexin, WANG Xia, LI Hanchang, LU Jintang, Growth mechanism of cerium salt conversion coating modified with citric acid on galvanized steel, The Chinese Journal of Nonferrous Metals, 22(5), 1390(2012)
(孔纲, 吴双, 林德鑫, 王霞, 黎汉昌, 卢锦堂, 热镀锌层柠檬酸改进型铈盐转化膜的生长机理, 中国有色金属学报, 22(5), 1390(2012))
18 M. Olivier, A. Lanzutti, C. Motte, L. Fedrizzi, Influence of oxidizing ability of the medium on the growth of lanthanide layers on galvanized steel, Corrosion Science, 52(4), 1428(2010)
doi: 10.1016/j.corsci.2010.01.011
19 A. Conde, M. A. Arenas, A. D. Frutos, J. Damborenea, Effective corrosion protection of 8090 alloy by cerium conversion coatings, Electrochimica Acta, 53(26), 7760(2008)
doi: 10.1016/j.electacta.2008.05.039
20 GU Baoshan, GONG Li, YANG Peiyan, Study on performance and corrosion resistance mechanism of rare metal conversion coating on Al alloy surface, Rare Metal And Engineering, 43(2), 429(2014)
(顾宝珊, 宫丽, 杨培燕, 铝合金表面稀土转化膜性能与耐蚀机理研究, 稀有金属材料与工程, 43(2), 429(2014))
21 V. I. Nefedov, M. N. Firsov, I. S. Shaplygin, Electronic structures of MRhO2, MRh2O4, RhMO4 and Rh2MO6 on the basis of X-ray spectroscopy and ESCA data, Journal of Electron Spectroscopy & Related Phenomena, 26(1), 65(1982)
22 L. Yang, J. Li, X. Yu, M. L. Zhang, X. M. Huang, Lanthanum-based conversion coating on Mg-8Li alloy, Applied Surface Science, 255(5), 2338(2008)
23 C. Yang, H. Fan, S. Qiu, Y. X. Xi, Y. F. Fu, Microstructure and dielectric properties of La2O3 films prepared by ion beam assistant electron-beam evaporation, Journal of Non-Crystalline Solids, 355(1), 33(2009)
24 F. Rueda, J. Mendialdua, A. Rodriguez, R. Casanovo, Y. Barbaux, Gengembre, L, Jalowiecki. Characterization of Venezuelan Laterites By X-Ray Photoelectron Spectroscopy, Journal of Electron Spectroscopy & Related Phenomena, 82, 135(1996)
doi: 10.1016/S0368-2048(96)03035-6
25 M. Machkova, E. A. Matter, S. Kozhukharov, V. Kozhukharov, Effect of the anionic part of various Ce(III) salts on the corrosion inhibition efficiency of AA2024 aluminium alloy, Corrosion Science, 69(6), 396(2013)
doi: 10.1016/j.corsci.2013.01.008
26 S. C. Tjong, H. W. Huo, Corrosion protection of in situ Al-based composite by cerium conversion treatment, Journal of Materials Engineering & Performance, 18(1), 88(2009)
doi: 10.1007/s11665-008-9264-y
27 YANG Zhenhai, XU Ning, QIU Zhuxian, Measurement of aluminium corrosion potential-pH and the polarization curve, Journal of Northeastern University(Natural Science), 21(4), 401(2000)
(杨振海, 徐宁, 邱竹贤, 铝的电位-pH图及铝腐蚀曲线的测定, 东北大学学报: 自然科学版, 21(4), 401(2000))
doi: 10.3321/j.issn:1005-3026.2000.04.016
28 ZHANG Jianghong, ZHANG Yingjie, YAN Yuxing, Investigation on the mechanism of forming rare earth conversion coating on zinc plating, Chinese Rare Earths, 31(1), 69(2010)
(章江洪, 张英杰, 闫宇星, 锌镀层表面稀土转化膜成膜机理分析, 稀土, 31(1), 69(2010))
29 WANG Bing, LIU Qingyou, WANG Xiangdong, JIA Shujun, LU Ji, DONG Han, Inhibitive mechanism of Ce-ion and La-ion for carbon steel in NaCl solution, Journal of Chinese Society for Corrosion and Protection, 27(3), 151(2007)
(汪兵, 刘清友, 王向东, 贾书君, 卢吉, 董瀚, 稀土Ce和La对碳钢在NaCl溶液中的缓蚀机理, 中国腐蚀与防护学报, 27(3), 151(2007))
doi:
[1] LI Pengyu, LIU Zitong, KANG Shumei, CHEN Shanshan. Effect of Plasma Treatment on Performance of Polybutylene Adipate Coating on Biomedical AZ31 Mg-alloy[J]. 材料研究学报, 2023, 37(4): 271-280.
[2] LIAO Hongyu, JIA Yongxin, SU Ruiming, LI Guanglong, QU Yingdong, LI Rongde. Effect of Retrogression Times on Microstructure and Corrosion Resistance of 2024 Aluminum Alloy[J]. 材料研究学报, 2023, 37(4): 264-270.
[3] CHEN Jie, LI Hongying, ZHOU Wenhao, ZHANG Qingxue, TANG Wei, LIU Dan. Effect of Heat Input on Low Temperature Toughness and Corrosion Resistance of Q1100 Steel Welded Joints[J]. 材料研究学报, 2022, 36(8): 617-627.
[4] GAO Wei, LIU Jiangnan, WEI Jingpeng, YAO Yuhong, YANG Wei. Structure and Properties of Cu2O Doped Micro Arc Oxidation Coating on TC4 Titanium Alloy[J]. 材料研究学报, 2022, 36(6): 409-415.
[5] YANG Liuyang, TAN Zhuowei, LI Tongyue, ZHANG Dalei, XING Shaohua, JU Hong. Dynamic Corrosion Behavior of Pipeline Defects Characterized by WBE and EIS Testing Techniques[J]. 材料研究学报, 2022, 36(5): 381-391.
[6] LI Yufeng, ZHANG Nianfei, LIU Lishuang, ZHAO Tiantian, GAO Wenbo, GAO Xiaohui. Preparation of Phosphorus-containing Graphene and Corrosion Resistance of Composite Coating[J]. 材料研究学报, 2022, 36(12): 933-944.
[7] CHEN Yiwen, WANG Cheng, LOU Xia, LI Dingjun, ZHOU Ke, CHEN Minghui, WANG Qunchang, ZHU Shenglong, WANG Fuhui. Protective Performance of a Novel Inorganic Composite Coatings on CB2 Ferritic Heat Resistant Steel at 650℃ in Oxygen Flow with Water Vapor[J]. 材料研究学报, 2021, 35(9): 675-681.
[8] LI Lingmei, HUANG Huizhen, ZHANG Qinghuan, SHUAI Gewang. Effect of P on Properties of Sn-9Zn-0.1S Lead-Free Solder[J]. 材料研究学报, 2021, 35(8): 615-622.
[9] HAO Xinxin, XI Tong, ZHANG Hongzhen, YANG Chunguang, YANG Ke. Effect of Quenching Temperature on Microstructure and Properties of Cu-bearing 5Cr15MoV Martensitic Stainless Steel[J]. 材料研究学报, 2021, 35(12): 933-941.
[10] ZHANG Dalei, WEI Enze, JING He, YANG Liuyang, DOU Xiaohui, LI Tongyue. Construction of Super-hydrophobic Structure on Surface of Super Ferritic Stainless Steel B44660 and Its Corrosion Resistance[J]. 材料研究学报, 2021, 35(1): 7-16.
[11] WANG Guanyi, CHE Xin, ZHANG Haoyu, CHEN Lijia. Low-cycle Fatigue Behavior of Al-5.4Zn-2.6Mg-1.4Cu Alloy Sheet[J]. 材料研究学报, 2020, 34(9): 697-704.
[12] HUANG Anran, ZHANG Wei, WANG Xuelin, SHANG Chengjia, FAN Jiajie. Corrosion Behavior of Ferritic Stainless Steel in High Temperature Urea Environment[J]. 材料研究学报, 2020, 34(9): 712-720.
[13] GONG Weiwei, YANG Bingkun, CHEN Yun, HAO Wenkui, WANG Xiaofang, CHEN Hao. In Situ SECM Observation of Corrosion Behavior of Carbon Steel at Defects of Epoxy Coating under AC Current Conditions[J]. 材料研究学报, 2020, 34(7): 545-553.
[14] ZHU Jinyang, TAN Chengtong, BAO Feihu, XU Lining. CO2 Corrosion Behaviour of A Novel Al-containing Low Cr Steel in A Simulated Oilfield Formation Water[J]. 材料研究学报, 2020, 34(6): 443-451.
[15] LIANG Xinlei, LIU Qian, WANG Gang, WANG Zhenyu, HAN En-Hou, WANG Shuai, YI Zuyao, LI Na. Study on Corrosion Resistance and Thermal Insulation Properties of Graphene Oxide Modified Epoxy Thermal Insulation Coating[J]. 材料研究学报, 2020, 34(5): 345-352.
No Suggested Reading articles found!