Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (1): 9-14    DOI: 10.11901/1005.3093.2017.799
  研究论文 本期目录 | 过刊浏览 |
TaN薄膜的等离子体增强原子层沉积及其抗Cu扩散性能
王永平,丁子君,朱宝,刘文军,丁士进()
专用集成电路与系统国家重点实验室 复旦大学微电子学院 上海 200433
Plasma-enhanced Atomic Layer Deposition of TaN Film and Its Resistance to Copper Diffusion
Yongping WANG,Zijun DING,Bao ZHU,Wenjun LIU,Shijin DING()
State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China
引用本文:

王永平,丁子君,朱宝,刘文军,丁士进. TaN薄膜的等离子体增强原子层沉积及其抗Cu扩散性能[J]. 材料研究学报, 2019, 33(1): 9-14.
Yongping WANG, Zijun DING, Bao ZHU, Wenjun LIU, Shijin DING. Plasma-enhanced Atomic Layer Deposition of TaN Film and Its Resistance to Copper Diffusion[J]. Chinese Journal of Materials Research, 2019, 33(1): 9-14.

全文: PDF(2217 KB)   HTML
摘要: 

使用Ta[N(CH3)2]5和NH3等离子体作为反物用等离子体增强原子层沉积工艺生长了TaN薄膜,借助原子力显微镜、X射线光电子能谱、四探针和X射线反射等手段研究了薄膜的性能与工艺条件之间的关系。结果表明,TaN薄膜主要由Ta、N和少量的C、O组成。当衬底温度由250℃提高到325℃时Ta与N的原子比由46:41升高到55:35,C的原子分数由6%降低到2%。同时,薄膜的密度由10.9 g/cm3提高到11.6 g/cm3,电阻率由0.18 Ω?cm降低到0.044 Ω?cm。与未退火的薄膜相比,在400℃退火30 min后TaN薄膜的密度平均提高了~0.28 g/cm3,电阻率降低到0.12~0.029 Ω?cm。在250℃生长的3 nm超薄TaN阻挡层在500℃退火30 min后仍保持良好的抗Cu扩散性能。

关键词 材料表面与界面原子层沉积扩散阻挡层退火TaN薄膜    
Abstract

TaN films were deposited on monocrystalline silicon wafer via plasma enhanced atomic layer deposition with Ta[N(CH3)2]5 as precursor and NH3 plasma as coreactant. The as deposited films were characterized by means of atomic force microscopy, X-ray photoelectron spectroscopy, four-point probe and X-ray reflection. The results show that the as-deposited film consists mainly of TaN with small quantities of C and O. As the deposition temperature increases from 250oC to 325oC, the ratio of Ta/N increases from 46:41 to 55:35, and the C-content (atomic fraction) decreases from 6% to 2%. Meanwhile, the resistivity of the film gradually decreases from 0.18 Ω?cm to 0.044 Ω?cm, and the film density increases from 10.9 g/cm3 to 11.6 g/cm3. After annealing at 400oC for 30 min, the film density shows an increment of ~0.28 g/cm3 on average, and the film resistivity decreases to 0.12-0.029 Ω?cm. Further, the barrier performance test results indicate that the TaN film of 3 nm in thickness deposited at 250oC demonstrates a perfect barrier function after annealing at 500oC for 30 min.

Key wordssurface and interface in the materials    atomic layer deposition    diffusion barrier    annealing    TaN films
收稿日期: 2018-01-11     
ZTFLH:  TN304  
基金资助:国家科技重大专项(2015ZX02102-003)
作者简介: 王永平,男,1986年生,博士生
图1  TaN薄膜生长速率与衬底温度的关系
图2  生长速率与NH3脉冲时间和NH3流量的关系
图3  薄膜厚度与反应循环数目的关系
图4  TaN薄膜的XPS的全谱随Ar+原位刻蚀时间的变化图
Etching timeN 1s/%Ta 4f/%O 1s/%C 1s/%
0 min19182142
3 min39401110
6 min414586
9 min414676
表1  在250℃沉积的TaN薄膜的元素原子分数随原位Ar+刻蚀时间的变化

Substrate

temperature

N 1s/%Ta 4f/%O 1s/%C 1s/%
250℃414676
275℃404785
300℃375283
325℃355582
表2  Ar+原位刻蚀9 min的不同TaN薄膜的原子分数
图5  在不同温度生长的TaN薄膜的Ta 4f 和C 1s的XPS高分辨率谱
图6  在不同温度生长的TaN薄膜(~2 nm)的表面形貌
图7  未退火和在400℃退火的TaN薄膜的电阻率和密度
图8  在不同温度退火后MOS器件的击穿场强分布和代表性I-V曲线
1 KuoY L, LeeC, LinJ C, et al. Characteristics of DC reactively sputtered (Ti, Zr)N thin films as diffusion barriers for Cu metallization [J]. Electrochem. Solid St., 2003, 6(9): 123
2 KwonJ D, YunJ, KangS W. Comparison of tantalum nitride films for different NH3 /H2 /Ar reactant states in two-step atomic layer deposition [J]. Jpn. J. Appl. Phys., 2009, 48(2): 1
3 JourdanN, BarbarinY, CroesK, et al. Plasma enhanced chemical vapor deposition of manganese on low-k dielectrics for copper diffusion barrier application [J]. ECS Solid State Lett., 2013, 2(3): 25
4 Semiconductor Industry Association. The International Technology Roadmap for Semiconductors 2.0: Interconnect [EB/OL].
5 SomaniS, MukhopadhyayA, MusgraveC. Atomic layer deposition of tantalum nitride using a novel precursor [J].J. Phys. Chem. C, 2011, 115(23): 11507
6 TsaiM H, SunS C, LeeC P, et al. Metal-organic chemical vapor deposition of tantalum nitride barrier layers for ULSI applications [J]. Thin Solid Films, 1995, 270(1):531
7 OhshitaY, OguraA, HoshinoA, et al. Low-pressure chemical vapor deposition of TaCN films by pyrolysis of ethylamido-tantalum [J].J. Cryst. Growth, 2000, 220(4): 604
8 TsaiM H, SunS C, ChiuH T, et al. Metalorganic chemical vapor deposition of tantalum nitride by tertbutylimidotris(diethylamido) tantalum for advanced metallization [J]. Appl. Phys. Lett., 1995, 67(8): 1128
9 TsaiM H, SunS C, TsaiC E, et al. Comparison of the diffusion barrier properties of chemical-vapor-deposited TaN and sputtered TaN between Cu and Si [J].J. Appl. Phys., 1996, 79(9): 6932
10 AlenP, JuppoM, RitalaM, et al. Atomic layer deposition of Ta(Al)N(C) thin films using trimethylaluminum as a reducing agent [J].J. Electrochem. Soc., 2001, 148(10): 566
11 KimH, LavoieC, CopelM, et al. The physical properties of cubic plasma-enhanced atomic layer deposition TaN film [J].J. Appl. Phys., 2004, 95(10): 5848
12 StrehleS, SchumacherH, SchmidtD, et al. Effect of wet chemical substrate pretreatment on the growth behavior of Ta(N) films deposited by thermal ALD [J]. Microelectron. Eng., 2008, 85(10): 2064
13 BurtonB B, LavoieA R, GeorgeS M. Tantalum nitride atomic layer deposition using (tert-butylimido) tris (diethylamido) tantalum and hydrazine [J].J. Electrochem. Soc., 2008, 155(7): 508
14 YanH, LiL, HoF Y, et al. Formation and characterization of magnetron sputtered Ta-Si-N-O thin films [J]. Thin Solid Films, 2009, 517(17): 5207
15 KimH, LavoieC, CopelM, et al. The physical properties of cubic plasma-enhanced atomic layer deposition TaN films [J].J. Appl. Phys., 2004, 95(10): 5848
16 KumarS, GreenslitD, ChakrabortyT, et al. Atomic layer deposition growth of a novel mixed-phase barrier for seedless copper electroplating applications [J].J. Vac. Sci. Technol. A, 2009, 27(27): 572
17 FangZ, AspinallH C, OdedraR, et al. Atomic layer deposition of TaN and Ta3N5 using pentakis(dimethylamino)tantalum and either ammonia or monomethylhydrazine [J].J. of Cryst. Growth, 2011, 331(1): 33
18 BaeN J, NaK I, ChoH I, et al. Thermal and electrical properties of 5-nm-thick TaN film prepared by atomic layer deposition using a pentakis(ethylmethylamino)tantalum precursor for copper metallization [J]. Jpn. J. Appl. Phys., 2006, 45(12): 907
19 ParkY J, LeeD R, BaikS. Synchrotron X-ray reflectivity for characterization of the initial ALD growth of TaN [J].J. Korean Phys. Soc., 2011, 59(2): 458
20 AnacletoA C, ZaunerA, CanianD C, et al. Atomic layer deposition of tantalum nitride based thin films from cyclopentadienyl type precursor [J]. Thin Solid Film, 2010, 519(1): 367
21 RushworthS A, SmithL M, KingsleyA J, et al. Vapour pressure measurement of low volatility precursors [J]. Microelectron. Reliab., 2005, 45(5-6): 1000
22 XieQ, MusschootJ, DetavernierC, et al. Diffusion barrier properties of TaNx films prepared by plasma enhanced atomic layer deposition from PDMAT with N2 or NH3 plasma [J]. Microelectron. Eng., 2008, 85(10): 2059
23 PuurunenR L. Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process [J].J. Appl. Phys., 2005, 97(12): 121301
24 GeorgeS M. Atomic Layer Deposition: An overview [J]. Chem. Rev., 2010, 110 (1): 111
25 BrizeV, PrieurT, VioletP, et al. Developments of TaN ALD process for 3D conformal coatings [J]. Chem. Vapor Depos., 2015, 17(10-12): 284
26 HaoL J, LaxmanR K, LanemanS A. HVM production and challenges of UHF PDMAT for ALD-TaN [J]. Solid State Technol., 2014, 57(4): 31
27 VioletP, NutaI, ChatillonC, et al. Cracking study of pentakis (dimethylamino) tantalum vapors by Knudsen cell mass spectrometry [J]. Rapid Commun. Mass Sp., 2010, 24(20): 2949
28 ZhangQ Y, MeiX X, YangD Z, et al. Preparation, structure and properties of TaN and TaC films obtained by ion beam assisted deposition [J]. Nucl. Instrum. Methods Phys. Res. B, 1997, 127(128): 664
29 ArranzA, PalacioC. Composition of tantalum nitride thin films grown by low-energy nitrogen implantation:a factor analysis study of the Ta 4f XPS core level [J]. Appl. Phys. A, 2005, 81(7): 1405
30 ArshiN, LuJ, JooY K, et al. Effects of nitrogen composition on the resistivity of reactively sputtered TaN thin films [J]. Surf. Interface Anal., 2015, 47(1): 154
31 VargasM, CastilloH A, ParraE R, et al. Stoichiometry behavior of TaN, TaCN and TaC thin films produced by magnetron sputtering [J]. Appl. Surf. Sci., 2013, 279(279): 7
32 PiallatF, BeuginV, GassilloudR, et al. Evaluation of plasma parameters on PEALD deposited TaCN [J]. Microelectron. Eng., 2013, 107(1): 156
33 LamourP, FiouxP, PoncheA, et al. Direct measurement of the nitrogen content by XPS in self-passivated TaNx thin films [J]. Surf. Interface Anal., 2010, 40(11): 1430
34 WangY P, DingZ J, LiuQ X, et al. Plasma-assisted atomic layer deposition and post-annealing enhancement of low resistivity and oxygen-free nickel nano-films using nickelocene and ammonia precursors [J].J. Mater. Chem. C, 2016, 4(47): 11059
[1] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[2] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[3] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[5] 陈开旺, 张鹏林, 李树旺, 牛显明, 胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(1): 39-46.
[6] 王伟, 周山琦, 宫鹏辉, 张浩泽, 史亚鸣, 王快社. 退火温度对TC4钛合金热轧板材的显微组织、织构和力学性能影响[J]. 材料研究学报, 2023, 37(1): 70-80.
[7] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[8] 程红杰, 刘黄娟, 姜婷, 王法军, 李文. 近红外反射超疏水黄色涂层的制备和性能[J]. 材料研究学报, 2022, 36(9): 687-698.
[9] 张红亮, 赵国庆, 欧军飞, Amirfazli Alidad. 基于聚多巴胺的超疏水棉织物的一锅法制备及其油水分离性能[J]. 材料研究学报, 2022, 36(2): 114-122.
[10] 崔丽, 孙丽丽, 郭鹏, 马鑫, 王舒远, 汪爱英. 沉积时间对聚醚醚酮表面类金刚石薄膜的结构和性能的影响[J]. 材料研究学报, 2022, 36(11): 801-810.
[11] 李建中, 朱博轩, 王振宇, 赵静, 范连慧, 杨柯. 输尿管支架表面化学接枝镀铜涂层及其性能[J]. 材料研究学报, 2022, 36(10): 721-729.
[12] 李蕊, 王浩, 张天刚, 牛伟. Ti811合金表面激光熔覆Ti2Ni+TiC+Al2O3+CrxSy复合涂层的组织和性能[J]. 材料研究学报, 2022, 36(1): 62-72.
[13] 李修贤, 邱万奇, 焦东玲, 钟喜春, 刘仲武. α籽晶促进低温反应溅射沉积α-Al2O3薄膜[J]. 材料研究学报, 2022, 36(1): 8-12.
[14] 范金辉, 李鹏飞, 梁晓军, 梁建平, 徐长征, 蒋力, 叶祥熙, 李志军. 镍-不锈钢复合板轧制过程中界面的结合机制[J]. 材料研究学报, 2021, 35(7): 493-500.
[15] 卢壹梁, 杜瑶, 王成, 辛丽, 朱圣龙, 王福会. 纳米Al2O3TiO2改性有机硅涂层对304不锈钢高温氧化行为的影响[J]. 材料研究学报, 2021, 35(6): 458-466.