Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (8): 597-602    DOI: 10.11901/1005.3093.2016.549
  研究论文 本期目录 | 过刊浏览 |
磷酸改性对对位芳纶纤维力学性能的影响和破坏机理
陆赵情(), 苏治平, 张美云, 郝杨
陕西科技大学轻工科学与工程学院 西安 710021
Mechanical Behavior and Failure Mechanism of Phosphoric Acid Modified Para-Aramid Fiber
Zhaoqing LU(), Zhiping SU, Meiyun ZHANG, Yang HAO
College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi Province, China, 710021
引用本文:

陆赵情, 苏治平, 张美云, 郝杨. 磷酸改性对对位芳纶纤维力学性能的影响和破坏机理[J]. 材料研究学报, 2017, 31(8): 597-602.
Zhaoqing LU, Zhiping SU, Meiyun ZHANG, Yang HAO. Mechanical Behavior and Failure Mechanism of Phosphoric Acid Modified Para-Aramid Fiber[J]. Chinese Journal of Materials Research, 2017, 31(8): 597-602.

全文: PDF(2324 KB)   HTML
摘要: 

研究了磷酸改性对对位芳纶(PPTA)纤维力学性能的影响和破坏机理。测量了PPTA纤维的单丝拉伸强度和力-位移曲线来评价其力学性能,用扫描电子显微镜(SEM)、傅里叶红外光谱(FT-IR)和X射线衍射(XRD)等手段表征了PPTA纤维改性前后的表面形貌、化学结构和结晶度。结果表明,磷酸改性破坏PPTA纤维中韧性较高的皮层结构,使改性后纤维的力-位移曲线的最大断裂载荷点向低位移点偏移,拉伸强度降低。在磷酸改性过程中PPTA分子链中的酰胺键因发生水解反应而断裂,导致PPTA纤维的拉伸强度下降。磷酸改性使结晶不完善的皮层从纤维表面剥离,从而使纤维的结晶度升高,韧性降低;而过高的磷酸改性浓度(40%,质量分数)使纤维的结晶度降低,导致PPTA纤维的拉伸强度显著降低。

关键词 有机高分子材料对位芳纶纤维磷酸改性力学性能破坏机理    
Abstract

Para-aramid fiber was modified with phosphoric acid (PA) and then was characterized by means of scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction(XRD). The mechanical behavior of the modified fiber (PPTA) was evaluated via measurement of the tensile strength and force-displacement curve of monofilament. The results show that the maximal fracture force of the modified fibers shifted to lower displacement region in force-displacement curves and the tensile strength of the monofilament decreased due to the damage of the skin region of PPTA fiber induced by PA-modification. Some aramid groups can be hydrolyzed during PA-modification process, thus decreasing the monofilament tensile strength of the modified PPTA fibers. In addition, the crystallinity of the modified fibers was improved because the original para-crystalline skin region was peeled off from the surface of PPTA fiber by PA-modification, hence resulting in the decrease of toughness of PA-modified fiber. The monofilament tensile strength of PPTA fiber decreased remarkably once it was modified with PA with concentration of higher than 40%(mass fraction), which can be attributed to the decrease of crystallinity.

Key wordsorganic polymer materials    para-aramid fiber    phosphoric acid modification    mechanical behavior    failure mechanism
收稿日期: 2016-09-20     
ZTFLH:  TQ342  
基金资助:陕西省科技统筹创新工程计划项目(2016KTCQ01-87),华南理工大学制浆造纸工程国家重点实验室开放基金(201333),陕西省教育厅重点实验室项目(12JS018)
作者简介:

作者简介 陆赵情,男,1979年生,博士,教授

图1  拉伸载荷下PPTA纤维的力-位移曲线图
图2  磷酸改性对PPTA纤维拉伸强度的影响
图3  磷酸改性对PPTA纤维表面形貌的影响
图4  PPTA纤维的皮-芯结构及断裂模型示意图[16]
图5  磷酸改性前后PPTA纤维的红外光谱图
图6  磷酸改性过程中PPTA纤维表面发生的反应示意图
图7  PPTA纤维的XRD图
PA concentration/% CI/%
0 78.29
10 78.21
20 77.29
30 81.46
40 72.7
表1  磷酸改性对PPTA纤维结晶度的影响
图8  PPTA纤维的变形模型[19]
[1] Wang C X, Du M, Lv J C, et al.Surface modification of aramid fiber by plasma induced vapor phase graft polymerization of acrylic acid . I . Influence of plasma conditions[J]. Appl. Surf. Sci., 2015,349: 333
[2] Lu Z, Jiang M, Zhang M, et al.Characteristics of PPTA chipped fiber/fibrid and their properties for sheet making[J]. J. Eng. Fiber Fabr., 2016, 11(1): 1
[3] Jang J, Yang H.The effect of surface treatment on the performance improvement of carbon fiber/polybenzoxazine composites[J]. J. Mater. Sci., 2000, 35(9): 229
[4] Jiang D, Liu L, Long J, et al.Reinforced unsaturated polyester composites by chemically grafting amino-POSS onto carbon fibers with active double spiral structural spiralphosphodicholor[J]. Compos. Sci. Technol., 2014, 100: 158
[5] Jia C, Chen P, Liu W, et al.Surface treatment of aramid fiber by air dielectric barrier discharge plasma at atmospheric pressure[J]. Appl. Surf. Sci., 2011, 257(9): 4165
[6] Liu L, Huang Y D, Zhang Z Q, et al.Ultrasonic treatment of aramid fiber surface and its effect on the interface of aramid/epoxy composites[J]. Appl. Surf. Sci., 2008, 254(9): 259
[7] Xing L, Liu L, Huang Y, et al.Enhanced interfacial properties of domestic aramid fiber-12 via high energy gamma ray irradiation[J]. Compos. Eng., 2015, 69B: 50
[8] Chen J, Zhu Y, Ni Q, et al.Surface modification and characterization of aramid fibers with hybrid coating[J]. Appl. Surf. Sci., 2014, 321: 103
[9] Gao J, Dai Y, Wang X, Huang J, et al.Effects of different fluorination routes on aramid fiber surface structures and interlaminar shear strength of its composites[J]. Appl. Surf. Sci., 2013, 270: 627
[10] Li C, Zhen Q, Luo Z, et al.Effect of calcium chloride on the surface properties of Kevlar fiber[J]. J. Appl. Polym. Sci., 2015, 132(4): 1
[11] Li G, Zhang C, Wang Y, et al.Interface correlation and toughness matching of phosphoric acid functionalized Kevlar fiber and epoxy matrix for filament winding composites[J]. Compos. Sci. Technol., 2008, 68(15-16): 3208
[12] Li J, Xia Y C.Interfacial characteristics of an epoxy composite reinforced with phosohoric acid-functionalized kevlar fibers[J]. Mech. Compos. Mater., 2010, 46(2): 211
[13] Park S -J, Seo M-K, Ma T -J, et al.Effect of chemical treatment of Kevlar fibers on mechanical interfacial properties of composites[J]. J. Colloid Interf. Sci., 2002, 252(1): 249
[14] Liu T M, Zheng Y S, Hu J.Surface modification of aramid fibers with novel chemical approach[J].Polym. Bull., 2011, 66(2): 259
[15] Qiang D, Zhang M.Selective hydrolysis of cellulose for the preparation of microcrystalline cellulose by phosphotungstic acid[J]. Cellulose, 2016, 23(2):1199
[16] Hearle J W S. High-performance Fibres[M]. Cambridge England: Woodhead Publishing Ltd, 2001
[17] Mosquera M E G, Jamond M, Martinez-alonso A, et al. Thermal Transformations of Kevlar Aramid Fibers during Pyrolysis: Infrared and Thermal Analysis Studies[J]. Chem. Mater., 1994, 6(11): 1918
[18] Rebouillat S, Donnet J -B, Wang T K.Surface microstructure of a Kevlar aramid fibre studied by direct atomic force microscopy[J]. Polymer, 1997, 38(9): 2245
[19] Rao Y, Waddon A J, Farris R J.Structure-property relation in poly(p-phenylene terephthalamide) (PPTA) fibers[J]. Polymer, 2001, 42(13): 5937
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[3] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[4] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[5] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[6] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[7] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[8] 雷志国, 文胜平, 黄晖, 张二庆, 熊湘沅, 聂祚仁. 冷轧变形和添加SiAl-2Mg-0.8Cu(-Si)合金的组织和力学性能的影响[J]. 材料研究学报, 2023, 37(6): 463-471.
[9] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[10] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[11] 陈志鹏, 朱智浩, 宋梦凡, 张爽, 刘田雨, 董闯. 基于Ti-6Al-4V团簇式设计的超高强Ti-Al-V-Mo-Nb-Zr合金[J]. 材料研究学报, 2023, 37(4): 308-314.
[12] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[13] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[14] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[15] 赵云梅, 赵洪泽, 吴杰, 田晓生, 徐磊. 热处理对粉末冶金Inconel 718合金TIG焊接的组织和性能的影响[J]. 材料研究学报, 2023, 37(3): 184-192.