Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (4): 300-308    DOI: 10.11901/1005.3093.2016.283
  研究论文 本期目录 | 过刊浏览 |
碳纤维增强空心玻璃微珠/环氧树脂复合材料的力学性能
余为(), 王亚东, 张任良, 李婷, 李慧剑
燕山大学 河北省重型装备与大型结构力学可靠性重点实验室 秦皇岛 066004
Mechanical Properties of Carbon Fiber Reinforced Hollow Glass Microsphere/Epoxy Composite
Wei YU(), Yadong WANG, Renliang ZHANG, Ting LI, Huijian LI
Key Laboratory of Mechanical Reliability for Heavy Equipments and Large Structures of Hebei Province, Yanshan University, Qinhuangdao 066004, China
引用本文:

余为, 王亚东, 张任良, 李婷, 李慧剑. 碳纤维增强空心玻璃微珠/环氧树脂复合材料的力学性能[J]. 材料研究学报, 2017, 31(4): 300-308.
Wei YU, Yadong WANG, Renliang ZHANG, Ting LI, Huijian LI. Mechanical Properties of Carbon Fiber Reinforced Hollow Glass Microsphere/Epoxy Composite[J]. Chinese Journal of Materials Research, 2017, 31(4): 300-308.

全文: PDF(3237 KB)   HTML
摘要: 

制备了纤维长度为1 mm和2 mm的碳纤维增强空心玻璃微珠/环氧树脂复合材料,其纤维质量比分别为0.2%、0.5%、1%和3%。对材料进行三点弯曲实验和压缩实验,研究了纤维长度和纤维质量比对其弯曲强度和弯曲弹性模量、压缩强度和压缩弹性模量等力学性能的影响。结果表明,添加两种长度的碳纤维都能明显提高复合材料的弯曲和压缩力学性能。随着碳纤维质量比的增大复合材料的弯曲强度和压缩强度呈先增大后减小的趋势,当碳纤维的质量比为0.5%时达到最大值,随后则随纤维含量的增大而逐渐降低。当碳纤维的长度为1 mm质量比为0.5%时,复合材料试件的弯曲强度和压缩强度比未添加纤维时分别提高198%和110%。碳纤维的长度为1 mm时纤维含量的变化对复合材料的弯曲强度、压缩强度和压缩弹性模量有较大的影响,但是当纤维长度为2 mm时纤维含量的变化对弯曲强度和压缩强度的影响不大。

关键词 复合材料碳纤维空心玻璃微珠/环氧树脂弯曲强度压缩强度    
Abstract

Composites of hollow glass microspheres/epoxy resin were reinforced with carbon fibers (CF) of 1 mm and/or 2 mm in length, with mass fraction: 0.2%, 0.5%, 1% and 3% for the two fibers, respectively. The effect of the length and content of fibers on the flexural strength and flexural modulus, compressive strength and compressive elastic modulus of composites was investigated by three-point bending tester and compression testing. The experimental results show that the addition of carbon fibers of two different lengths can significantly improve the flexural and compressive properties of composite materials. The flexural strength and compressive strength of the composite increase firstly and then decrease with the increasing mass fraction of carbon fibers, which reach a maximum value when the fiber mass fraction is 0.5%, and then decrease with the increasing content of carbon fibers. When the length of carbon fiber is 1mm and the fiber mass fraction is 0.5%, the flexural strength increased by 198% and the compressive strength increased by 110% in contrast to that without addition of carbon fiber. When the length of carbon fiber is 1mm, the change of fiber content has great influence on the flexural strength, compressive strength and compressive modulus of the composite. However, when the length of carbon fiber is 2 mm the effect of the change of fiber content on the flexural strength and compressive strength of composites is a little.

Key wordscomposite    carbon fiber    hollow glass microsphere/epoxy    flexural strength    compressive strength
收稿日期: 2016-06-30     
ZTFLH:  TB332  
基金资助:河北省自然科学基金青年基金(A2014203051)和河北省高等学校科学技术研究项目(Z2015089)
作者简介:

作者简介 余 为,男,1979年生,副教授

No. Epoxy Hollow glass Carbon Mass
resin/g Microsphere/g fiber/g ratio
1 200 10 0 0
2 200 10 0.4 0.2%
3 200 10 1 0.5%
4 200 10 2 1%
5 200 10 6 3%
表1  碳纤维-空心玻璃微珠/环氧树脂材料配比
图1  弯曲试件
图2  压缩试件
图3  碳纤维-空心玻璃微珠/环氧树脂试件的弯曲载荷-位移曲线
Fiber mass ratio Carbon length
/mm
Density
/gcm-3
Strength
/MPa
Specific strength
/MPacm3g-1
Modulus
/MPa
0 0 0.927 13.05 14.08 526
0.2% 1 0.925 31.53 34.09 1732
2 0.923 28.52 30.90 1322
0.5% 1 0.926 38.94 42.05 1874
2 0.925 30.36 32.82 1463
1% 1 0.928 30.53 32.90 1315
2 0.928 28.65 30.87 1376
3% 1 0.931 25.76 27.67 1292
2 0.932 26.85 28.81 1451
表2  试件的弯曲实验数据
图4  碳纤维-空心玻璃微珠/环氧树脂的弯曲强度
图5  碳纤维-空心玻璃微珠/环氧树脂的弯曲比强度
图6  碳纤维-空心玻璃微珠/环氧树脂复合材料的弯曲弹性模量
图7  不同纤维质量比碳纤维-空心玻璃微珠/环氧树脂试件的压缩应力-应变曲线
Fiber mass ratio Carbon length
/mm
Yield limit
/MPa
Specific strength
/MPacm3g-1
Modulus
/MPa
0 0 20.58 22.20 543
0.2% 1 33.32 36.02 775
2 35.44 38.40 903
0.5% 1 43.22 46.67 1270
2 36.26 39.20 1062
1% 1 26.57 28.63 729
2 34.72 37.41 890
3% 1 24.72 26.55 596
2 32.04 34.38 613
表3  试件的压缩实验数据
图8  碳纤维-空心玻璃微珠/环氧树脂复合材料的压缩强度
图9  碳纤维-空心玻璃微珠/环氧树脂复合材料的压缩弹性模量
图10  弯曲试件断口扫描电镜图片
[1] Nikhil G, Raymond Y, Maurizio P.Comparison of tensile and compressive characteristics of vinyl ester/glass microballoon syntactic foams[J]. Compos. Part B, 2010, 41(3): 236
[2] Bardella L, Genna F.On the elastic behavior of syntactic foams[J]. Int. J. Solids Struct., 2001, 38(40-41): 7235
[3] Lu Z X.A review of studies on the mechanical behavior of syntactic foamed plastics[J]. Adv. Mech., 2004, 34(3): 341(卢子兴. 复合泡沫塑料力学行为的研究综述[J]. 力学进展, 2004,34(3): 341)
[4] Lu Z X, Shi S L, Zou B, et al.Compressive behavior of epoxy syntactic foam[J]. Acta. Mater. Compos. Sin., 2005, 22(4): 17(卢子兴, 石上路, 邹波等. 环氧树脂复合泡沫材料的压缩力学性能[J]. 复合材料学报, 2005, 22(4): 17)
[5] Bai Z Z, Zhao X L, Luo X F, et al.Research on preparation and properties of hollow glass bead filled epoxy composites[J]. Thermosetting Resin. 2009, 24(2): 32(白战争, 赵秀丽, 罗雪方等. 空心玻璃微珠/环氧复合材料的制备及性能研究[J]. 热固性树脂, 2009, 24(2): 32)
[6] Gupta N, Ricci W.Comparison of compressive properties of layered syntactic foams having gradient in microballoon volume fraction and wall thickness[J]. Mater. Sci. Eng. A, 2006, 427(1-2): 331
[7] Lu Z X, Zou B, Li Z M, et al.Mechanical properties of polyurethane foams filled by micro-spheres[J]. Acta Mater. Compos. Sin., 2008, 25(6): 175(卢子兴, 邹波, 李忠明等. 空心微珠填充聚氨酯泡沫塑料的力学性能[J]. 复合材料学报, 2008, 25(6): 175)
[8] Yu M, Zhu P, Ma Y Q.Experimental study and numerical prediction of the elastic properties of syntactic foams considering the interfacial effect[J]. Acta Mater. Compos. Sin., 2013, 30(3): 225(喻明,朱平,马颖琦. 考虑界面效应的复合泡沫塑料弹性性能数值仿真预测与试验研究[J]. 复合材料学报, 2013, 30(3): 225)
[9] Meng F M, Wang P, Li R, et al.Research on preparation and properties of solid buoyancy materials filled with hollow glass microspheres[J]. Mater. Chin., 2014, 33(9-10): 608(孟凡明, 王鹏, 李瑞等. 空心玻璃微珠填充固体浮力材料的制备及性能研究[J]. 中国材料进展, 2014, 33(9-10): 608)
[10] Yu W, Li H J, He C J, et al.Mechanical properties of epoxy resin filled with hollow glass bead[J]. Acta Mater. Compos. Sin., 2010, 27(4): 189(余为, 李慧剑, 何长军等. 空心玻璃微珠填充环氧树脂复合材料力学性能研究[J]. 复合材料学报, 2010, 27(4): 189)
[11] Liang X, Li H J, Yu W, et al.Elastoplastic simulation of hollow particle filled composites[J]. Acta Mech. Solida Sin., 2013, 34(1): 73(梁希, 李慧剑, 余为等. 空心颗粒填充复合材料弹塑性力学行为模拟[J]. 固体力学学报, 2013, 34(1): 73)
[12] Chen Z, Huang Z X, Qin Y, et al.Compressive property of hollow glass microsphere/epoxy resin syntactic foam and its fracture mechanism[J]. Acta Mater. Compos. Sin., 2013, 30(2): 31(陈卓, 黄志雄, 秦岩等. 空心微球/环氧树脂复合泡沫塑料的抗压性能与破坏机制[J]. 复合材料学报, 2013, 30(2): 31)
[13] Wang B, Huang C, Huang Z X, et al.Effect of different coupling agents on interfacial properties of hollow glass microsphere/phenolic syntactic foams[J]. Chin. J. Mater. Res., 2016, 30(3): 209(汪波, 黄赤, 黄志雄等. 不同偶联剂对空心玻璃微球/酚醛复合泡沫塑料界面性能的影响[J]. 材料研究学报, 2016, 30(3): 209)
[14] Ferreira J A M, Capela C, Costa J D. A study of the mechanical behaviour on fibre reinforced hollow microspheres hybrid composites[J]. Compos. Part A, 2010, 41(3): 345
[15] Wang L J, Zhang J, Yang X, et al.Flexural properties of epoxy syntactic foams reinforced by fiberglass mesh and/or short glass fiber[J]. Mater. Des., 2014, 55(3): 929
[16] Chen L J, Wu F Q, Zhang X Y, et al.Modification and its mechanism of carbon fiber/epoxy resin composite material[J]. Chin. Synthetic Resin Plast., 2008, 25(1): 75(陈立军, 武凤琴, 张欣宇等. 碳纤维/环氧树脂复合材料的改性及改性机理[J]. 合成树脂及塑料, 2008, 25(1): 75)
[17] Huang H, Li D X, Ming H, et al.Effects of hollow glass bead on properties of fiber reinforced polypropylene[J]. Eng. Plast. Appl., 2012, 40(4): 80(黄虹, 李道喜, 明浩等. 空心玻璃微珠对碳纤维增强聚丙烯性能的影响研究[J]. 工程塑料应用, 2012, 40(4): 80)
[18] Wang T M, Chen S B, Wang Q H, et al.Damping analysis of polyurethane/epoxy graft interpenetrating polymer network composites filled with short carbon fiber and micro hollow glass bead[J]. Mater. Des., 2010, 31(8): 3810
[19] Wang Q H, Zhang X R, Pei X Q.Study on the synergistic effect of carbon fiber and graphite and nanoparticle on the friction and wear behavior of polyimide composites[J]. Mater. Des., 2010, 31(8): 3761
[20] Ai J Y, He Y J, Xiao S T.A study on the preparation and the properties of carbon fiber reinforced polycarbonate[J]. FRP/CM, 2010, (2): 38(艾娇艳, 何元锦, 肖舜通. 碳纤维/聚碳酸酯复合材料研究[J]. 玻璃钢/复合材料, 2010, (2): 38)
[21] Yi Z B, Feng L B, Hao X Z, et al.Effect of surface treatment on properties of carbon fiber and reinforced composites[J]. Chin. J. Mater. Res., 2015, 29(1): 97(易增博, 冯利邦, 郝相忠等. 表面处理对碳纤维及其复合材料性能的影响[J]. 材料研究学报, 2015, 29(1): 97)
[22] Han S, Duan Y X, Li C, et al.Bending properties of non-crimp stitched carbon fabric reinforced composites of different knit patterns[J]. Acta Mater. Compos. Sin., 2011, 28(5): 52(韩帅, 段跃新, 李超等. 不同针织结构经编碳纤维复合材料弯曲性能[J]. 复合材料学报, 2011, 28(5): 52)
[23] Huang Y J, Vaikhanski L, Nutt S R.3D long fiber-reinforced syntactic foam based on hollow polymeric microspheres[J]. Compos. Part A, 2006, 37: 488
[24] Wouterson E M, Boey F YC, Hu Xiao, et al.Effect of fiber reinforcement on the tensile, fracture and thermal properties of syntactic foam[J]. Polym., 2007, 48: 3183
[25] Lu Z X, Wang S, Li Z M, et al.Macroscopic and microscopic mechanical properties of polyurethane syntactic foams filled with hollow microspheres[J]. Acta Aeronaut. Astronaut. Sin., 2006, 27(5): 799(卢子兴, 王嵩, 李忠明等. 空心微珠填充聚氨酯复合泡沫塑料的宏、细观力学性能[J]. 航空学报, 2006, 27(5): 799)
[26] Yu M, Zhu P, Ma Y Q.Experimental study and numerical prediction of tensile strength properties and failure modes of hollow sphere filled syntactic foams[J]. Comp. Mater. Sci., 2012, 63: 232
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.