Please wait a minute...
Chin J Mater Res  2009, Vol. 23 Issue (6): 604-609    DOI:
论文 Current Issue | Archive | Adv Search |
Characterization of diamond–MWCNTs composite fiber synthesized under high pressure and high temperature
DENG Fuming 1;  LU Xuejun 1;2;    LIU Ruiping1;    XU Guojun  2;  CHEN Qiwu 1;   LI Wenzhu1;3
1.Institute of Superhard Cutting Tool Materials; China University of Mining and Technology; Beijing Campus; Beijing 100083
2.Beijing Institute of Electro–machining; Beijing 100191
3.Department of Physics; Zhejiang University; Hangzhou 310027
Cite this article: 

DENG Fuming LU Xuejun LIU Ruiping XU Guojun CHEN Qiwu LI Wenzhu . Characterization of diamond–MWCNTs composite fiber synthesized under high pressure and high temperature. Chin J Mater Res, 2009, 23(6): 604-609.

Download:  PDF(1170KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A regrown composite fiber was synthesized during the sintering of diamond under high pressure 5.8 GPa and high temperature 1500 for 1 min by using 3% MWCNTs as additive. The experiment results revealed that the outer layer of the fiber is composed of nano–polycrystalline diamond, while the inner fiber is composed of MWCNTs. It is proposed that the untransformed MWCNTs may act as a template for the regrown outer layer of nano–polycrystalline diamond fiber under high pressure and high temperature.

Key words:  inorganic non-metallic materials       mullti--walled carbon nanotubes (MWCNTs)       nano--polycrystalline diamond fiber        high pressure sintering     
Received:  02 April 2009     
ZTFLH: 

TB321

 
Fund: 

Supported by National Nature Science Foundation of China No.50342017 and the Natural Science Foundation of Beijing No.2042019.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2009/V23/I6/604

1 S.Iijima, Helical microtubules of graphitic carbon, Nature, 354, 56(1991) 2 J.Tersoff, R.S.Roff, Structural Properties of a Carbon–Nanotube Crystal, Physical Review Letters, 73(5), 676(1994) 3 D.H.Robertson, D.W.Brenner, J.W.Mintmire, Energetics of nanoscale graphitic tubules, Physical Review B, 45(21), 12592(1992) 4 B.I.Yakobson, C.J.Brabec, J.Bernhole, Nanomechanics of Carbon Tubes: Instabilities beyond Linear Response, Physical Review Letters, 76(14), 2511(1996) 5 M.M.Treacy, T.W.Ebbesen, J.M.Gibson, Exceptionally high Young’s modulus observed for individual carbon nanotubes, Nature, 381, 678(1996) 6 E.W.Wong, P.E.Sheehan, C.M.Lieber, Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes, Science, 277, 1971(1997) 7 D.S.Tang, L.C.Chen, L.J.Wang, L.F.Sun, Z.Q.Liu, G.Wang, W.Y.Zhou, S.S.Xie, Behavior of carbon nanotubes under high pressure and high temperature, Journal of Materials Research, 15(2), 560(2000) 8 Y.Q.Zhu, T.Sekine, T.Kobayashi, E.Takazawa, M.Terrones, H. Terrones, Collapsing carbon nanotubes and diamond formation under shock waves, Chemical Physics Letters, 287(5–6), 689(1998) 9 CAO Limin, ZHANG Ming, ZHANG Xiangyi, GAO Chunxiao, ZHOU Zhenhua, ZHANG Jun, DAI Daoyang, SUN Liling, WANG Wenkui, Phase transition and diamond synthesis of carbon nanatubes under high pressure and high temperature, Chinese Journal of High Pressure Physics, 14(1), 33(2000) (曹立民, 张明, 张湘义, 高春晓, 周镇华, 张君, 戴道阳, 孙力玲, 王文魁, 高温高压下碳纳米管的相转变及金刚石的合成, 高压物理学报, 14(1), 33(2000)) 10 CHEN Liangchen, WANG Lijun, TANG Dongsheng, XIE Sishen, JING Changqing, X–ray diffraction analysis of carbon nanotubes under high pressure, Chinese Journal of High Pressure Physics, 15(1), 1(2001) (陈良辰, 王莉君, 唐东升, 解思深, 靳常青, 高压下碳纳米管的X射线衍射研究, 高压物理学报,  15(1), 1(2001)) 11 B.Wei, J.Zhang, J.Liang, D.Wu, The mechanism of phase transformation from carbon nanotube to diamond, Carbon, 36(7–8), 997(1998) 12 R.A.Skeland, The Science and Engineering of Materials, 3rd edition (Boston, PWS publishing, 1994) p.238 13 S.B.Sinnot, O.A.Shenderova, C.T.White, D.W.Brenner, Mechanical properties of nanotubule fibers and composites determined from theoretical calculations and simulations, Carbon, 36(1–2), 1(1998) 14 H.J.Dai, E.W.Wong, Y.Z.Liu, S.S.Fan, C.M.Lieber, Synthesis and characterization of carbide nanorods, Nature, 375, 769(1995) 15 W.Q.Han, S.S.Fan, Q.Q.Li,W.J.Liang. B.L.Gu, D.P.Yu, Continuous synthesis and charac–terization of silicon carbide nanorods, Chemical Physics Letters, 265(3–5), 374(1997) 16 W.Q.Han, S.S.Fan, Q.Q.Li, Y.D.Hu, Synthesis of Gallium Nitride Nanorods Through a Carbon Nanotube–Confined Reaction, Science, 277, 1287(1997) 17 XIE Youzan, The Theory and Synthesis Technology of Diamond (Beijing, The Press of technology of Hunan, 1993) p.80 (谢有赞,   金刚石理论与合成技术,  (长沙, 湖南科技出版社, 1993) p.80) 18 Z.Y.Hao, Nucleation and growth of diamond, Journal of Crystal Growth, 140(3–4), 441(1994) 19 S.Suzuki, C.Bower, T.Kiyokura, Photoemission spectroscopy of single–walled carbon nanotube bundles, Journal of Electron Spectroscopy and Related Phenomena, 114–116, 225(2001) 20 H.Hiura, T.W.Ebbesen, K.Tanigaki, H.Takahashi, Raman studies of carbon nanotubes, Chemical Physics Letters, 202(6), 509(1993) 21 M.Nakamizo, R.Kammereck, P.L.Walker, Laser raman studies on carbons, Carbon, 12(3), 259(1974) 22 Y.B.Li, Y.Q.Zhu, Z.D.Gao, J.Liang, B.Q.Wei, D.H.Wu, Nucleation of diamond film growth by Buckytubes, Journal of Materials Science Letters, 14(18), 1281(1995) 23 S.Iijiam, T.Ichihashi, Y.Ando, Pentagons, heptagons and negative curvature in graphite microtubule growth, Nature, 356, 776(1992) 24 DENG Fuming, CHEN Qiwu, HUANG Peiyun, The Interfacial Structure of Polycrystallines of D–D (Bonding) Diamond and its Growth Pattern, Mining and Metallurgical Engineering (in Chinese), 19(1), 63(1999) (邓福铭, 陈启武, 黄培云, D--D结合型金刚石聚晶晶界结构及其生长模式, 矿冶工程,  19(1), 63(1999))
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!