Please wait a minute...
Chin J Mater Res  2009, Vol. 23 Issue (1): 64-68    DOI:
论文 Current Issue | Archive | Adv Search |
The photocatalytic activity of titanium -bearing blast furnace slag
LEI Xuefei ; XUE Xiangxin
School of Materials and Metallurgy; Northeastern University; Shenyang 110004
Cite this article: 

LEI Xuefei XUE Xiangxin. The photocatalytic activity of titanium -bearing blast furnace slag. Chin J Mater Res, 2009, 23(1): 64-68.

Download:  PDF(805KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Perovskite type sulfuric acid-modified titanium-bearing blast furnace slag (STBBFS) photocatalysts were prepared by the high energy ball milling method at different temperatures and characterized. Its photocatalytic activity was checked through the photocatalytic reduction of Cr(VI) as a model compound under UV-Vis light irradiation. The results showed that CaTiO3/TiO2 mixed crystal structure was found in STBBFS photocatalysts; the particle size increased with increasing calcinations temperature; the photocatalytic activities calcined at 400 oC showed a higher catalytic activity than other catalysts; the potocatalytic reduction efficiency of Cr(VI) reached 100% after 10 h.

Key words:  inorganic non-metallic materials      doping      photocatalytic reduction      sulfuric acid -modified titanium-bearing blast furnace slag     
Received:  03 June 2008     
ZTFLH: 

TB321

 
  TQ032

 
Fund: 

Supported by National Natural Science Foundation of China No.50274025,the Key Basic Research and Development Program of China No.2007CB613504,and Science and Technology of Education Ministry No.307009.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2009/V23/I1/64

1 C.H.Lu, C.Y.Hu, C.H.Wu, Preparation and characterization of new visible-light-driven BaCo0.5Nb0.5O3 photocatalyst characters of perovskite-type LaCoO3 prepared by reactive grinding, Mater. Lett., 61, 3959(2007)
2 L.Huang, M.Bassir, S.Kaliaguine, Characters of perovskite-type LaCoO3 prepared by reactive grinding, Mater. Chem. Phys., 101, 259(2007)
3 X.M.Lu, J.M.Xie, H.M.Shu, Microwave-assisted synthesis of nanocrystalline YFeO3 and study of its photoactivity, Mater. Sci. Eng. B., 138, 289(2007)
4 S.G.Hur, T.W.Kim, S.J.Hwang, Influences of A-and B-site cations on the physicochemical properties of perovskitestructured A(In1/3Nb1/3B1/3)O3 (A=Sr, Ba; B=Sn, Pb) photocatalysts, J. Photoche. Photobiol. A., 183, 176(2006)
5 Y.Yang, Y.B.Sun, Y.S.Jiang, Photoinduced structural transformation of SrFeO3 and Ca2Fe2O5 during photodegradation of methyl orange, Mater. Chem. Phys., 96, 234(2006)
6 Y.Yang, Y.S.Jiang, Y.W.Wang, Photoinduced decomposition of BaFeO3 during photodegradation of methyl orange, J. Mol. Catal. A: Chem., 270, 56(2007)
7 DENG Jiguang, WANG Guozhi, ZHANG Yujuan, DAI Hongxing, HE Hong, QIU Wenge, Advancement of preparation strategies and photocatalytic performance of perovskite-type oxides, Journal of the Chinese Rare Earth Society, 24, 80(2006)
(邓积光, 王国志, 张玉娟, 戴洪兴, 何洪, 邱文革, 钙钛矿型氧化物的制备与光催化性能研究进展, 中国稀土学报,  24, 80(2006))
8 WEI Yuelin, HUANG Yunfang, CHEN Haiting, WU Jihuai, Effect of tantalum substitution for titanium in layered perovskite type K2La2Ti3O10 photocatalytic property, Chinese Journal of Materials Research, 22(1), 93(2008)
(魏月琳, 黄昀fang,  陈海庭, 吴季怀, 担掺杂对层状钙钦矿斓钦酸钾光催化性能的影响, 材料研究学报,  22(1), 93(2008))
9 NIU Xinshu, CAO Zhimin, Progress in photocatalysis of perovskite oxides, Chemical Research and Application, 18, 770(2006)
(牛新书,曹志民, 钙钛矿型复合氧化物光催化研究进展, 化学研究与应用,  18, 770(2006))
10 WANG Guiyun, WANG Yanji, QIN Ya, SONG Baojun, The effect of calcination conditions on the photocatalytic performance of CaTiO3, Materials Science & Technology, 15(6), 831(2007)
(王桂yun, 王延吉, 秦娅, 宋宝俊,焙烧条件对CaTiO3光催化性能的影响, 材料科学与工艺,  15(6), 831(2007))
11 G.Colon, J.M.Sanchez-Espana, M.C.Hidalgo, J.A.Navio, Effect of TiO2 acidic pre-treatment on the photocatalytic properties for phenol degradation, J. Photochem. Photobiol. A, 179, 20(2006)
12 F.Jiang, Z.Zheng, Z.Y.Xu, Aqueous Cr(VI) photoreduction catalyzed by TiO2 and sulfated TiO2, J. Hazard. Mater. B, 134, 94(2006)
13 L.K.Noda, R.M.Almeida, N.S.Goncalves, TiO2 with a high sulfate content-thermogravimetric analysis, determination of acid sites by infrared spectroscopy and catalytic activity, Catal. Today, 85, 69(2003)
14 ZHANG Xia, ZHAO Yan, ZHANG Caibei, MENG Hao, The photocatalytic activity of nano-TiO2 powder with mixed crystal structure, Chinese Journal of Materials Research, 20(5), 454(2005)
(张霞, 赵岩, 张彩碚, 孟 皓, 混晶结构纳米TiO2粉的光催化活性, 材料研究学报,  20(5), 454(2005))
15 A.Bojinova, R.Kralchevska, I.Poulios, C.Dushkin, Anatase/rutile TiO2 composites: Influence of the mixing
ratio on the photocatalytic degradation of Malachite Green and Orange II in slurry, Mater. Chem. Phys., 106, 187(2007)
16 PENG Wenshi, LIU Gaokui, Infrared Spectra of Inorganic Compound (Beijing, Science Press, 1982) p.508
(彭文世, 刘高魁,  矿物红外光谱图集 (北京, 科学出版社, 1982) p.508)
17 D.G.Taylor, C.M.Nenadic, J.V.Crable, Infrared spectra for mineral identification, Am. Ind. Hyg. Ass. J., 31, 100(1970)
18 K.Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, third edition (New York, John Wiley and Sons, Inc., 1978) p.448
19 J.M.Hunt, M.P.Wisherd, L.C.Bonham, Infrared absorption spectra of minerals and other inorganic compounds, Analyt. Chem., 22, 1478 (1950)
20 J.P.Lyon, Infrared Absorption Spectra, the front page (London, Academic Press, 1967) p.508

[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!