Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (6): 474-480    DOI: 10.11901/1005.3093.2024.381
ARTICLES Current Issue | Archive | Adv Search |
High Temperature Growth Process of YBCO Superconducting Solder by Fluorine-free Chemical Solution Method
HAN Leilei1, WANG Wentao1,2(), WU Yun1, CHEN Jiajun1, ZHAO Yong1,3
1.Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
2.School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031, China
3.College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China
Cite this article: 

HAN Leilei, WANG Wentao, WU Yun, CHEN Jiajun, ZHAO Yong. High Temperature Growth Process of YBCO Superconducting Solder by Fluorine-free Chemical Solution Method. Chinese Journal of Materials Research, 2025, 39(6): 474-480.

Download:  HTML  PDF(958KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

YBCO superconducting solders were prepared on YGdBCO superconducting layers of tapes by fluorine-free chemical solution method. The effect of high temperature heat treatment on the structure of solders and superconducting properties of tape was investigated. The results show that the YBCO polycrystalline film with strong (103) diffraction peak and uniform grain distribution was obtained by sintering the amorphous precursor film at 795 oC for 1 h. Then the polycrystalline film was transformed into YBCO single crystal film (solder) with (00l) orientation after sintering it at 820 oC for 30 min. After annealing in oxygen, the critical current Ic of the tape deposited with YBCO single crystal film is close to that of the original tape, indicating no obvious influence of the growth of superconducting solder on the superconductivity of the tape.

Key words:  inorganic non-metallic materials      high temperature growth process      epitaxial growth      YBCO film      microstructure      critical current     
Received:  05 September 2024     
ZTFLH:  TB34  
Fund: Natural Science Foundation of Sichuan Province(2025ZNSFSC0360);Fundamental Research Funds for the Central Universities(2682022ZTPY086)
Corresponding Authors:  WANG Wentao, Tel: (028)87600787, E-mail: wtwang@swjtu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.381     OR     https://www.cjmr.org/EN/Y2025/V39/I6/474

IBAD/PLD YGdBCO CC
StructureAg/YGdBCO/CeO2/LaMnO3/MgO/Y2O3/Al2O3/Hasetlloy
Superconducting layer thickness~1 μm
Critical current102-133 A
Buffer layer thickness~0.2 μm
Substrate materialHastelloy
Substrate thickness~50 μm
Thickness of silver layer~1.5 μm
Size (Thickness × width)0.055 mm × 4.00 mm
Table 1  Specificationss of YGdBCO tape
Fig.1  Flow chart of YBCO superconducting solder preparation on the surface of superconducting layer of tape. Exposing partial YGdBCO layer by etching silver (a), wet film coating and pyrolysis (b), polycrystalline film growth in O2 (c) and single crystal film formation in lower p(O2) (d)
Fig.2  XRD patterns of YBCO polycrystalline films prepared on YGdBCO superconducting layers of the tapes at different temperatures (a), Relative intensity and full width at half maximum of (005) diffraction peak, and I(006)/I(005) (b)
Fig.3  SEM morphology of the original superconducting layer and YBCO polycrystalline films prepared at different temperatures
Fig.4  V-I curves of the original tape and the tape deposited with YBCO polycrystalline film (795 oC)
Fig.5  XRD patterns of YBCO single crystal films transformed from polycrystalline films at diff-erent temperatures (a), the relative intensity and full width at half maximum of (005) diffraction peak, and the relative intensity of (103) diff-raction peak (b)
Fig.6  SEM morphology of YBCO single crystal films transformed from polycrystalline films at different temperatures
Fig.7  XRD patterns of single crystal films transformed from polycrystalline films at 820 oC with different time (a), the relative intensity and full width at half maximum of (005) diffraction peak, and the relative intensity of (103) diffraction peak (b)
Fig.8  SEM surface morphology of single crystal films transformed from polycrystalline films at 820 oC with different growth time
Fig.9  V-I curves of the original tape and the tape with single crystal film prepared by sintering YBCO polycrystalline film at 820 oC for 30 min
1 Hahn S, Kim K, Kim K, et al. 45.5-tesla direct-current magnetic field generated with a high-temperature superconducting magnet[J]. Nature, 2019, 570(7762): 496
2 Liu J, Wang Q, Qin L, et al. World record 32.35 tesla direct-current magnetic field generated with an all-superconducting magnet[J]. Supercond. Sci. Technol., 2020, 33(3): 03LT01
3 Wang M J, Wang W T, Liu L, et al. The electromagnetic properties of YGdBCO coated conductors with periodic micro-holes arrays[J]. J. Alloy. Compd., 2021, 877: 160138
4 Wen H H. Development of research on new high temperature superconductors[J]. Chin. J. Mater. Res., 2015, 29(4): 241
doi: 10.11901/1005.3093.2015.111
闻海虎. 新型高温超导材料研究进展[J]. 材料研究学报, 2015, 29(4): 241
doi: 10.11901/1005.3093.2015.111
5 Parkinson B. Design considerations and experimental results for MRI systems using HTS magnets[J]. Supercond. Sci. Technol., 2017, 30(1): 014009
6 Peng W, Li K, Nan J, et al. Critical current degradation and joint resistance rise of REBCO tape and coil during heat treatment[J]. IEEE Trans. Appl. Supercond., 2024, 34(5): 1
7 Park D K, Ahn M C, Kim H M, et al. Analysis of a joint method between superconducting YBCO coated conductors[J]. IEEE Trans. Appl. Supercond., 2007, 17(2): 3266
8 Lu J, Han K, Sheppard W R, et al. Lap joint resistance of YBCO coated conductors[J]. IEEE Trans. Appl. Supercond., 2010, 21(3): 3009
9 Zhang Y, Duckworth R C, Ha T T, et al. Solderability study of RABiTS-based YBCO coated conductors[J]. Physica C., 2011, 471(15-16): 437
10 Park Y, Lee M, Ann H, et al. A superconducting joint for GdBa2-Cu3O7 - δ -coated conductors[J]. NPG Asia Mater., 2014, 6(5): e98
11 Kulikov I V, Chernykh M Y, Krylova T S, et al. A Superconducting joint for 2G HTS tapes[J]. Tech. Phys. Lett., 2019, 45(4): 324
12 Huang D, Shang H, Xie B, et al. An efficient approach for superconducting joint of YBCO coated conductors[J]. Supercond. Sci. Technol., 2022, 35(7): 075004
13 Teranishi R, Hiramatsu K, Yasuyama S, et al. Superconducting joint of GdBa2Cu3O y coated conductors by crystallization of an additionally deposited precursor layer[J]. IEEE Trans. Appl. Supercond., 2019, 29(5): 1
14 Miyajima T, Teranishi R, Yasuyama S, et al. Microstructures of superconducting joint between GdBa2Cu3O y -coated conductors via additionally deposited precursor films[J]. Jpn. J. Appl. Phys., 2019, 58(5): 050913
15 Congreve J V J, Shi Y, Huang K Y, et al. Improving mechanical strength of YBCO bulk superconductors by addition of Ag[J]. IEEE Trans. Appl. Supercond., 2019, 29(5): 1
16 Shimoyama J. Superconducting joints for the 1.3 GHz persistent NMR magnet under JST-Mirai Program[J]. Supercond. Sci. Technol., 2023, 36(12): 121001
17 Hiramatsu K, Teranishi R, Yamada K, et al. Joint of REBa2Cu3O7 - δ coated conductors using metal organic deposition[J]. Physics Procedia, 2016, 81: 109
18 Ohki K, Nagaishi T, Kato T, et al. Fabrication, microstructure and persistent current measurement of an intermediate grown superconducting (iGS) joint between REBCO-coated conductors[J]. Supercond. Sci. Technol., 2017, 30(11): 115017
19 Kirchner A, Nielsch K, Hühne R. Towards a reliable bridge joint between REBCO coated conductors[J]. J. Phys. Conf. Ser., 2020, 1559(1): 012033
20 Wang M J, Wang W T, Liu L, et al. Effects of chemical etching on structure and properties of Y0.5Gd0.5Ba2Cu3O7 - z coated conductors[J]. Ceram. Int., 2018, 44(13): 15572
[1] JIANG Ailong, TAN Bingzhi, PANG Jianchao, SHI Feng, ZHANG Yunji, ZOU Chenglu, LI Shouxin, WU Qihua, LI Xiaowu, ZHANG Zhefeng. Effect of Microstructure Characteristics of Compacted Graphite Cast Irons of RuT300 and RuT450 on Low-cycle Fatigue Properties and Damage Mechanisms[J]. 材料研究学报, 2025, 39(6): 443-454.
[2] YANG Liang, CHUAI Rongyan, XUE Dan, LIU Fang, LIU Kunlin, LIU Chang, CAI Guixi. Microstructure and Mechanical Properties of Resistance Spot Welding Joints for SUS301L Stainless Steel[J]. 材料研究学报, 2025, 39(6): 435-442.
[3] YUAN Xinyu, SHI Fei, LIU Jingxiao, ZHANG Haojie, YANG Dayi, WANG Meiyu, REN Ming. Effect of Er2O3 Addition on Crystallization Behavior and Properties of Lithium Disilicate Glass Ceramics[J]. 材料研究学报, 2025, 39(6): 455-462.
[4] HU Yong, LU Shifeng, YANG Tao, PAN Chunwang, LIU Lincheng, ZHAO Longzhi, TANG Yanchuan, LIU Dejia, JIAO Haitao. Microstructure and Properties of FeCoCrNiMn/6061 Al-alloy Matrix Composites[J]. 材料研究学报, 2025, 39(5): 353-361.
[5] FU Chunguo, XU Shiwei, YANG Xiaoyi, LI Mengnie. Effect of Welding Heat Source Mode on Microstructure and Properties of Weld Joints for 5083-H111 Al-alloy[J]. 材料研究学报, 2025, 39(4): 305-313.
[6] CHEN Shiyu, LI Wei, KUANG Haiyan, GAO Shaowei, PANG Dongfang. Dielectric-, Ferroelectric- and Piezoelectric-property of Lu3+ Doped 0.67BiFeO3-0.33BaTiO3 Lead-free Piezoelectric Ceramics[J]. 材料研究学报, 2025, 39(4): 272-280.
[7] LI Honglei, LIU Chuang, LU Zhengwei, CHU Tianyi, CHEN Yuqiu, JIANG Sumeng, GONG Jun, PEI Zhiliang. Preparation and Performance of Ni-Al2O3/Diamond Composite Coating[J]. 材料研究学报, 2025, 39(4): 314-320.
[8] ZHONG Weijie, JIAO Dongling, LIU Zhongwu, LIU Na, XU Wenyong, LI Zhou, ZHANG Guoqing. High Temperature Oxidation of a HIPed Nickel-based Superalloy[J]. 材料研究学报, 2025, 39(3): 172-184.
[9] ZHANG Huifang, WU Hao, XIAO Chuanmin, LI Qi, XIE Jun, LI Jinguo, WANG Zhenjiang, YU Jinjiang. Effect of Heat Treatment on Microstructure and Tensile Properties of a Typical γʹ-strengthened Co-based Superalloy[J]. 材料研究学报, 2025, 39(3): 198-206.
[10] RAN Zizuo, ZHANG Shuang, SU Zhaoyi, WANG Yang, ZOU Cunlei, ZHAO Yajun, WANG Zengrui, JIANG Weiwei, DONG Chenxi, DONG Chuang. Cluster-formula-based Composition Optimization of 316 Stainless Steel and Its Experimental Verification[J]. 材料研究学报, 2025, 39(3): 207-216.
[11] HU Ming, ZHANG Xinquan, LI Weiqiang, YANG Xiaokang, HUANG Jinhu, LEI Xiaofei, QIU Jianke, DONG Limin. Effect of Fe- and Cu-content on Microstructure and Mechanical Properties of TC10 Ti-alloy Bars[J]. 材料研究学报, 2025, 39(3): 217-224.
[12] YUAN Hongyuan, ZHANG Siqian, WANG Dong, ZHANG Yingjian, MA Li, YU Minghan, ZHANG Haoyu, ZHOU Ge, CHEN Lijia. Effect of Long-term Thermal Exposure on Microstructure Evolution of Interface Thermal Barrier Coating/DZ411 Ni-based Superalloy[J]. 材料研究学报, 2025, 39(2): 113-125.
[13] MU Chunhao, CHEN Wenge, YU Tianliang, MA Jiangjiang. Interface Microstructure and Properties of TA2/Q345 Composite Pipes Prepared by Hot Assembling and Diffusion Welding[J]. 材料研究学报, 2025, 39(1): 35-43.
[14] XU Zhanyuan, ZHAO Wei, SHI Xiangshi, ZHANG Zhenyu, WANG Zhonggang, HAN Yong, FAN Jinglian. Effect of Composition Adjustment on Structure and Magnetic Properties of Soft Magnetic MnZn Ferrites[J]. 材料研究学报, 2025, 39(1): 55-62.
[15] HAN Heng, LI Hongqiao, LI Peng, MA Guozheng, GUO Weiling, LIU Ming. Effect of Cold Spraying Temperature on Structure and Tribological Properties of Ni-Ti3AlC2 Composite Coating[J]. 材料研究学报, 2025, 39(1): 44-54.
No Suggested Reading articles found!