Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (5): 321-329    DOI: 10.11901/1005.3093.2023.312
REVIEWS Current Issue | Archive | Adv Search |
Research Progress on Fabrication and Chemical Doping of 122-type Iron-based Single Crystal Superconductors
YU Qihang1, YANG Fang1(), LIU Jixing2, HE Yixuan1, ZHANG Shengnan2, YAN Guo1,3, ZHANG Pingxiang1,2
1.Institute of Superconducting Materials and Applied Technology, Northwestern Polytechnical University, Xi'an 710072, China
2.Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China
3.Xi'an Juneng Medical Engineering Technologies Co., Ltd., Xi'an 710028, China
Cite this article: 

YU Qihang, YANG Fang, LIU Jixing, HE Yixuan, ZHANG Shengnan, YAN Guo, ZHANG Pingxiang. Research Progress on Fabrication and Chemical Doping of 122-type Iron-based Single Crystal Superconductors. Chinese Journal of Materials Research, 2024, 38(5): 321-329.

Download:  HTML  PDF(6262KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The discovery of iron-based superconductors has offered a new material family for exploring the mechanism of high-temperature superconductivity. 122-type iron-based superconductors has been widely studied by various researchers due to the easy fabrication for the parent compounds of 122-type iron arsenic matrix of high-quality single crystals of large-size. However, which do not intrinsically exhibit superconductivity. Generally, superconductivity is induced through chemical doping to introduce electrons, holes or chemical pressure in these compounds. This paper summarizes several fabrication methods on the single crystals of 122-type iron-based superconductors, including the flux method, Bridgman method, and optical floating zone method. The related research progress of these crystal growth methods are also reviewed. Besides, the recent rsearch progress related with chemical dopingof 122 iron arsenic superconductors, such aselectron doping, hole doping and isovalent doping etc. is also summerized.

Key words:  review      iron-based superconductor      single crystal      preparation method      chemical doping     
Received:  25 June 2023     
ZTFLH:  TB32  
Fund: National Key Research and Development Program of China(2021YFB3800200);National Natural Science Foundation of China(52372259);Young Elite Scientists Sponsorship Program by CAST(2022QNRC001)
Corresponding Authors:  YANG Fang, Tel: 18991255975, E-mail: yangfang@nwpu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.312     OR     https://www.cjmr.org/EN/Y2024/V38/I5/321

Fig.1  Crystal structure of iron-based superconductors (a) 11-type, (b) 111-type, (c) 122-type, (d) 1111-type, in which Ae and Ln represent alkali earth and lanthanide, respectively[3]
Fig.2  X-ray diffraction patterns at room temperature for Ca1 - x Na x Fe2As2 single crystals[27] (a) and (008) peaks for various compositions of BaFe2(As1 - x P x)2[28] (b)
Fig.3  A schematic drawing of the apparatus used to grow single crystals of BaFe1.87Co0.13As2 (a) and BaFe1.87Co0.13As2 superconducting single crystals with size up to 20 mm × 10 mm × 2 mm[32] (b)
Fig.4  X-ray diffraction pattern at room temperature of the Ba0.6K0.4Fe2As2 superconducting single crystals (a) and the BaFe2 - x Co x As2 superconducting single crystals[35] (b)
Fig.5  Ba122 superconducting single crystals located below the ingot grown using the Bridgman method[36]. (a) and some examples of Ba(Fe1 - x Co x)2As2 superconducting single crystals grown using the Bridgman technique[37] (b)
Fig.6  Sealed double-wall ampoule used for crystal growth (a) andelemental distribution maps of Cs, Fe and Se collected with micro-XRF measurements from different regions of the Cs x Fe2 - y Se2 superconducting crystals[38] (b)
Fig.7  K x Fe2 - y Se2 superconducting single crystals grow-th process[41]
Fig.8  SC phase diagram for Ba(Fe1 - x Co x)2As2 single crystals for x < 0.12[46]
Fig.9  SC phase diagram of Ca1 - x Na x Fe2As2[54]
Fig.10  SC phase diagram of BaFe2(As1 - x P x)2[58]
1 Kamihara Y, Watanabe T, Hirano M, et al. Iron-Based layered superconductor La[O1 - x F x ]FeAs (x = 0.05-0.12) with Tc = 26 K[J]. J. Am. Chem. Soc., 2008, 130(11): 3296
doi: 10.1021/ja800073m pmid: 18293989
2 Ren Z A, Lu W, Yang J, et al. Superconductivity at 55 K in iron-based F-doped layered quaternary compound Sm[O1 - x F x ]FeAs[J]. Chin. Phys. Lett., 2008, 25(6): 2215
3 Johnson P D, Xu G, Yin W G. Iron-Based Superconductivity[M]. Cham, Springer International Publishing, 2015: 21
4 Guo J, Jin S, Wang G, et al. Superconductivity in the iron selenide K x Fe2Se2(0 ≤ x ≤ 1.0)[J]. Phys. Rev. B, 2010, 82(18): 180520
5 Li C H, Shen B, Han F, et al. Transport properties and anisotropy of Rb1 - x Fe2 - ySe2 single crystals[J]. Phys. Rev. B, 2011, 83(18): 184521
6 Krzton-Maziopa A, Shermadini Z, Pomjakushina E, et al. Synthesis and crystal growth of Cs0.8(FeSe0.98)2: A new iron-based superconductor with Tc = 27 K[J]. J. Phys.: Condens. Matter, 2011, 23(5): 052203
7 Fang M H, Wang H D, Dong C H, et al. Fe-based superconductivity with Tc = 31 K bordering an antiferromagnetic insulator in (Tl, K)Fe x Se2[J]. EPL, 2011, 94(2): 27009
8 Park T, Park E, Lee H, et al. Pressure-induced superconductivity in CaFe2As2[J]. J. Phys.: Condens. Matter, 2008, 20(32): 322204
9 Wang Z, Song Y J, Shi H L, et al. Microstructure and ordering of iron vacancies in the superconductor system K y Fe x Se2 as seen via transmission electron microscopy[J]. Phys. Rev. B, 2011, 83(14): 140505
10 Ricci A, Poccia N, Joseph B, et al. Intrinsic phase separation in superconducting K0.8Fe1.6Se2(Tc = 31.8 K) single crystals[J]. Supercond. Sci. Technol., 2011, 24(8): 082002
11 Quebe P, Terbüchte L J, Jeitschko W. Quaternary rare earth transition metal arsenide oxides RTAsO (T = Fe, Ru, Co) with ZrCuSiAs type structure[J]. J. Alloys Compd., 2000, 302: 70
12 Zhigadlo N D, Katrych S, Bukowski Z, et al. Single crystals of superconducting SmFeAsO1 - x F y grown at high pressure[J]. J. Phys.: Condens. Matter, 2008, 20: 342202
13 Fang L, Cheng P, Jia Y, et al. Growth of NdFeAs(O1 - x F x) single crystals at ambient pressure and their transport properties[J]. J. Cryst. Growth, 2009, 311: 358
14 Luo H Q, Cheng P, Wang Z S, et al. Normal state transport properties in single crystals of Ba1 - x K x Fe2As2 and NdFeAsO1 - x F x [J]. Physica C, 2009, 469: 477
15 Ni N, Bud'ko S L, Kreyssig A, et al. Anisotropic thermodynamic and transport properties of single-crystalline Ba1 - xK x Fe2As2 (x=0 and 0.45)[J]. Phys. Rev. B, 2008, 78: 014507
16 Ronning F, Klimczuk T, Bauer E D, et al. Synthesis and properties of CaFe2As2 single crystals[J]. J. Phys.: Condens. Matter, 2008, 20: 322201
17 Yan J Q, Kreyssig A, Nandi S, et al. Structural transition and anisotropic properties of single-crystalline SrFe2As2[J]. Phys. Rev. B, 2008, 78: 024516
18 Chen G F, Li Z, Dong J, et al. Transport and anisotropy in single-crystalline SrFe2As2 and A0.6K0.4Fe2As2 (A = Sr, Ba) superconductors[J]. Phys. Rev. B, 2008, 78: 224512
19 Luo H Q, Wang Z S, Yang H, et al. Growth and characterization of A1 - x K x Fe2As2 (A = Ba, Sr) single crystals with x = 0-0.4[J]. Supercond. Sci. Technol., 2008, 21: 125014
20 Prozorov R, Ni N, Tanatar M A, et al. Vortex phase diagram of Ba(Fe0.93Co0.07)2As2 single crystals[J]. Phys. Rev. B, 2008, 78(22): 224506
21 Luo X, Chen X. Crystal structure and phase diagrams of iron-based superconductors[J]. Sci. China Mater., 2015, 58: 77
22 Chen Y, Lu X, Wang M, et al. Systematic growth of BaFe2 - x Ni x As2 large crystals[J]. Supercond. Sci. Technol., 2011, 24: 065004
23 Zhang R, Gong D, Lu X, et al. The effect of Cr impurity to superconductivity in electron-doped BaFe2 - x Ni x As2[J]. Supercond. Sci. Technol., 2014, 27: 115003
24 Xie T, Gong D, Zhang W, et al. Crystal growth and phase diagram of 112-type iron pnictide superconductor Ca1 - y La y Fe1 - x Ni x As2[J]. Supercond. Sci. Technol., 2017, 30: 095002
25 Meier W R, Kong T, Bud’ko S L, et al. Optimization of the crystal growth of the superconductor CaKFe4As4 from solution in the FeAs-CaFe2As2-KFe2As2 system[J]. Phys. Rev. Mater., 2017, 1: 013401
26 Gu Y, Wang J, Ma X, et al. Single-crystal growth of the iron-based superconductor La0.34Na0.66Fe2As2[J]. Supercond. Sci. Technol., 2018, 31: 125008
27 Zhou H L, Zhang Y H, Li Y, et al. Growth and characterization of superconducting Ca1 - x Na x Fe2A2 single crystals by NaAs-flux met-hod[J]. Chin. Phys. B, 2022, 31(11): 117401
28 Nakajima M, Uchida S, Kihou K, et al. Growth of BaFe2(As1 - x P x)2 single crystals (0 ≤ x ≤ 1) by Ba2A2/Ba2P3-flux method[J]. J. Phys. Soc. Jpn., 2012, 81(10): 104710
29 Han F, Yang H, Shen B, et al. Metastable superconducting state in quenched K x Fe2 - y Se2[J]. Philos. Mag, 2012, 92(19-21): 2553
30 Wang G, Ying T, Huang Y, et al. Growth of (Na x K y)FezSe2 crystals by chlorides flux at low temperatures[J]. J. Cryst. Growth, 2014, 405: 1
31 Chen D P, Lin C T. The growth of 122 and 11 iron-based superconductor single crystals and the influence of doping[J]. Supercond. Sci. Technol., 2014, 27(10): 103002
32 Sun D L, Liu Y, Park J T, et al. Growth of large single crystals of BaFe1.87Co0.13As2 using a nucleation pole[J]. Supercond. Sci. Technol., 2009, 22(10): 105006
33 Liu Y, Sun D L, Park J T, et al. Aliovalent iron-doped BaFe2As2: single crystal growth and superconductivity[J]. Physica C, 2010, 470: 513
doi: 10.1016/j.physc.2009.11.024
34 Wang C L, Gao Z S, Yao C, et al. One-step method to grow Ba0.6K0.4Fe2As2 single crystals without fluxing agent[J]. Supercond. Sci. Technol., 2011, 24(6): 065002
35 Zhang C J, Zhang L, Xi C Y, et al. Single-crystal growth of BaFe2 - x Co x As2 without fluxing agent[J]. J. Supercond. Nov. Magn., 2011, 24(7): 2041.
36 Morinaga R, Matan K, Suzuki H S, et al. Single-crystal growth of the ternary BaFe2As2 phase using the vertical Bridgman technique[J]. Jpn. J. Appl. Phys., 2009, 48(1): 013004
37 Aswartham S, Nacke C, Friemel G, et al. Single crystal growth and physical properties of superconducting ferro-pnictides Ba(Fe, Co)2As2 grown using self-flux and Bridgman techniques[J]. J. Cryst. Growth, 2011, 314(1): 341
38 Krzton-Maziopa A, Pomjakushina E, Conder K. Single crystals of novel alkali metal intercalated iron chalcogenide superconduc-tors[J]. J. Cryst. Growth, 2012, 360: 155
39 Wen J, Xu G, Gu G, et al. Interplay between magnetism and superconductivity in iron-chalcogenide superconductors: crystal growth and characterizations[J]. Rep. Prog. Phys., 2011, 74: 124503
40 Wu A H, Shen H, Xu J Y, et al. Optical floating zone furnace: principles and applications in crystal growth[J]. J. Funct. Mater., 2007, 38(A10): 4036
武安华, 申 慧, 徐家跃 等. 光学浮区法生长技术及其在晶体生长中的应用[J]. 功能材料, 2007, 38(A10): 4036
41 Liu Y, Li Z C, Liu W P, et al. K x Fe2 - y Se2 single crystals: floating-zone growth, transport and structural properties[J]. Supercond. Sci. Technol., 2012, 25(7): 075001
42 Chen X, Dai P, Feng D, et al. Iron-based high transition temperature superconductors[J]. Nat. Sci. Rev., 2014, 1: 371
43 Wei F Y, Lv B, Deng L Z, et al. The unusually high Tc in rare-earth-doped single crystalline CaFe2As2[J]. Phil. Mag., 2014, 94(22): 2562
44 Leithe-Jasper A, Schnelle W, Geibel C, et al. Superconducting state in SrFe2 - xCo x As2 by internal doping of the iron arsenide layers[J]. Phys. Rev. Lett., 2008, 101(20): 207004
45 Sefat A S, Jin R, McGuire M A, et al. Superconductivity at 22 K in Co-doped BaFe2As2 crystals[J]. Phys. Rev. Lett., 2008, 101(11): 117004
46 Ni N, Tillman M E, Yan J Q, et al. Effects of Co substitution on thermodynamic and transport properties and anisotropic Hc2 in Ba(Fe1 - x Co x)2As2 single crystals[J]. Phys. Rev. B, 2008, 78(21): 214515
47 Han F, Zhu X, Cheng P, et al. Superconductivity and phase diagrams of the 4d- and 5d- metal-doped iron arsenides SrFe2 - x M x As2 (M = Rh, Ir, Pd)[J]. Phys. Rev. B, 2009, 80(2): 024506
48 Ni N, Thaler A, Kracher A, et al. Phase diagrams of Ba(Fe1 - x M x)2As2 single crystals (M = Rh and Pd)[J]. Phys. Rev. B, 2009, 80(2): 024511
49 Lv B, Deng L, Gooch M, et al. Unusual superconducting state at 49 K in electron-doped CaFe2As2 at ambient pressure[J]. Proc. Natl. Acad. Sci. U.S.A., 2011, 108(38): 15705
50 Rotter M, Tegel M, Johrendt D. Superconductivity at 38 K in the iron arsenide (Ba1 - x K x)Fe2As2[J]. Phys. Rev. Lett., 2008, 101(10): 107006
51 Aswartham S, Abdel-Hafiez M, Bombor D, et al. Hole doping in BaFe2As2: the case of Ba1 - x Na x Fe2As2 single crystals[J]. Phys. Rev. B, 2012, 85(22): 224520
52 Shirage P M, Miyazawa K, Kito H, et al. Superconductivity at 26 K in (Ca1 - x Na x)Fe2As2[J]. Appl. Phys. Express, 2008, 1: 081702
53 Zhao K, Liu Q Q, Wang X C, et al. Superconductivity above 33 K in (Ca1 - x Na x)Fe2As2[J]. J. Phys.: Condens. Matter, 2010, 22(22): 222203
54 Zhao K, Liu Q Q, Wang X C, et al. Doping dependence of the superconductivity of (Ca1 - x Na x)Fe2As2[J]. Phys. Rev. B, 2011, 84(18): 184534
55 Ren Z, Tao Q, Jiang S A, et al. Superconductivity induced by phosphorus doping and its coexistence with ferromagnetism in EuFe2(As0.7P0.3)2[J]. Phys. Rev. Lett., 2009, 102(13): 137002
56 Jiang S A, Xing H, Xuan G, et al. Superconductivity up to 30 K in the vicinity of the quantum critical point in BaFe2(As1 - x P x)2[J]. J. Phys.: Condens. Matter, 2009, 21(38): 382203
57 Kasahara S, Hashimoto K, Okazaki R, et al. Superconductivity induced by isovalent doping in single crystals of BaFe2(As1 - x P x)2[J]. Physica C, 2010, 470: 462
58 Tanatar M A, Torikachvili M S, Thaler A, et al. Effects of isovalent substitution and pressure on the interplane resistivity of single-crystal Ba(Fe1 - x Ru x)2As2[J]. Phys. Rev. B, 2014, 90(10): 104518
59 Shibauchi T, Carrington A, Matsuda Y. A quantum critical point lying beneath the superconducting dome in iron pnictides[J]. Annu. Rev. Condens. Matter Phys., 2014, 5: 113
60 Fernandes R M, Coldea A I, Ding H, et al. Iron pnictides and chalcogenides: a new paradigm for superconductivity[J]. Nature, 2022, 601: 35
[1] TIAN Songwen, LIU Lirong, TIAN Sugui. Creep Behavior and Mechanism of a Re/Ru-containing Nickel-based Single Crystal Superalloy[J]. 材料研究学报, 2024, 38(4): 248-256.
[2] ZHENG Mingrui, LI Yawei, LIU Jing, WANG Li, ZHENG Wei, DONG Jiasheng, ZHANG Jian, LOU Langhong. Effect of Notch Orientation and Temperature on Thermal Fatigue Behavior of a Third-Generation Single Crystal Superalloy DD33[J]. 材料研究学报, 2024, 38(2): 111-120.
[3] XU Dongwei, WANG Ruiqi, CHEN Ping. Research Progress of Graphene-based Absorbing Composites[J]. 材料研究学报, 2024, 38(1): 1-13.
[4] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[5] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[6] ZHANG Min, ZHANG Siqian, WANG Dong, CHEN Lijia. Creep Microstructure Damage and Influence on Re-creep Behavior for a Nickel-based Single Crystal Superalloy[J]. 材料研究学报, 2023, 37(6): 417-422.
[7] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[8] ZHOU Zhangrui, LV Peisen, ZHAO Guoqi, ZHANG Jian, ZHAO Yunsong, LIU Lirong. Stress Rupture Deformation Mechanism of Two "Replacement of Re by W" Type Low-cost Second-generation Nickel Based Single Crystal Superalloys at Elevated Temperatures[J]. 材料研究学报, 2023, 37(5): 371-380.
[9] ZHANG Yingjian, ZHANG Siqian, WANG Dong, ZHANG Haoyu, ZHOU Ge, CHEN Lijia. Effect of Long-term Thermal Exposure on Microstructure Evolution of a Platinum Modified Aluminide Coated Single Crystal Superalloy DD413[J]. 材料研究学报, 2023, 37(12): 889-899.
[10] WANG Sheng, ZHOU Qiaoting, ZHAN Huimin, CHEN Jingjing. Atomic Analysis of Contact-induced Subsurface Damage Behavior of Single Crystal SiC Based on Molecular Simulation[J]. 材料研究学报, 2023, 37(12): 943-951.
[11] CHEN Ruizhi, LIU Lirong, GUO Shengdong, ZHANG Mai, LU Guangxian, LI Yuan, ZHAO Yunsong, ZHANG Jian. Microstructural Stability and Stress Rupture Property of a 6Re/3Ru Containing Nickel-based Single Crystal Superalloy[J]. 材料研究学报, 2023, 37(10): 721-730.
[12] KONG Yafei, LUO Xinghong, LI Yang, LIU Shi. Effect of Gravity on Dendrite Growth and Microsegregation of Ni-based Single Crystal Superalloy[J]. 材料研究学报, 2023, 37(10): 770-780.
[13] HE Yufeng, WANG Li, WANG Dong, WANG Shaogang, LU Yuzhang, GU Ashan, SHEN Jian, ZHANG Jian. Effect of Hot Isostatic Pressing on Microstructure of a Third-Generation Single Crystal Superalloy DD33[J]. 材料研究学报, 2022, 36(9): 649-659.
[14] HE Ying, LI Chaoqun, CHEN Xiaoli, LONG Zhimei, LAI Jiaqi, SHAO Bin, MA Yilong, CHEN Dengming, DONG Jiling. Recent Development for Preparation Processes of Sm2Fe17N x Powders with High Magnetic Properties[J]. 材料研究学报, 2022, 36(5): 321-331.
[15] SHAO Siwu, ZHENG Yuting, AN Kang, HUANG Yabo, CHEN Liangxian, LIU Jinlong, WEI Junjun, LI Chengming. Progress on Application of Bias Technology for Preparation of Diamond Films[J]. 材料研究学报, 2022, 36(3): 161-174.
No Suggested Reading articles found!