Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (4): 269-278    DOI: 10.11901/1005.3093.2023.342
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Properties of Nanocomposite Hydrogel with Dopamine Modification
WANG Zhongnan(), GUO Hui, MU Yueshan
School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China
Cite this article: 

WANG Zhongnan, GUO Hui, MU Yueshan. Preparation and Properties of Nanocomposite Hydrogel with Dopamine Modification. Chinese Journal of Materials Research, 2024, 38(4): 269-278.

Download:  HTML  PDF(9025KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Zwitterionic hydrogel is one of the most promising cartilage repair and replacement materials with good biocompatibility and anti-bacteria adhesion properties. However, there is a certain gap involving in mechanical properties compared to natural cartilage, which greatly limits its practical application. Herein, the nano-hydroxyapatite was modified with dopamine by acid, and alkali conditions respectively to obtain a nanoparticle-modified composite hydrogel. It is found that an oxide film could form on the surface of nano hydroxyapatite modified by dopamine, and the benzene ring in the modified nano particles is combined to form a covalent bond with the zwitterionic hydrogel polymer chain. Meanwhile, dopamine improves the dispersity of nano-hydroxyapatite by acidic condition, thereby enhancing the thermal stability of zwitterionic hydrogel (decomposing until 323oC), as well as its network structure strength (energy storage modulus of 2.7 MPa) and internal friction capacity (loss factor of 0.041). Moreover, the compressive strength of acid nanocomposite hydrogel arrives at 11.66 MPa, which is 32 times higher than that of pure PSBMA zwitterionic hydrogel. Thus, the structural characteristics and mechanical properties of acid nanocomposite hydrogels are similar to those of natural cartilage, which provides a significant reference for the design and preparation of bionic materials.

Key words:  polymer material      nanocomposite hydrogel      mechanical properties      dopamine modification      nano hydroxyapatite     
Received:  12 July 2023     
ZTFLH:  TQ174  
Fund: Talent Fund of Beijing Jiaotong University(2022XKRC009);National Natural Science Foundation of China(51905296)
Corresponding Authors:  WANG Zhongnan, Tel: 18845616596, E-mail: zhn.wang@bjtu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.342     OR     https://www.cjmr.org/EN/Y2024/V38/I4/269

Fig.1  D@H modification effect (a) infrared spectrum results, (b) raman spectrum results, (c) XRD spectrum results and (d) powder diagram of modified nanoparticles after drying
Fig.2  Changes in the surface color of hydrogel and the color of the surface standing in the air (a), changes in the color of the hydrogel standing in the air after swelling (b), microstructure of the hydrogel (c) and the infrared spectrum of the hydrogel (d)
Fig.3  Diagram of composition structure of hydrogel (a) and diagram of synthesis mechanism (b) of nanocomposite hydrogel
Fig.4  Basic physical and chemical properties of hydrogel (a) weight loss rate versus temperature curve, (b) weight loss rate curve, (c) swelling rate and (d) freeze drying water content
Fig.5  Storage modulus G′ and dissipation modulus G″ of hydrogel with different additives versus angular velocity ω (a), the storage modulus G′ and dissipation modulus G″ of nanocomposite hydrogels with different mass ratios of DA to HA vary with angular velocity ω (b), stress relaxation test results of hydrogels with different additives (c), stress relaxation test results of nanocomposite hydrogels with different DA/HA mass ratios (d), loss factor tan of hydrogels with different additives δ And normalized relaxation modulus G (e), loss factor tan of hydrogels with different mass ratio of DA/HA δ Normalized relaxation modulus G (f) and TD@H-GE adhesion of nanocomposite hydrogels (g)
Fig.6  Compression fracture test results of hydrogels with different additives (a) and nanocomposite hydrogels with different mass ratios of DA/HA (b)
Fig.7  Compression cycle test results of hydrogel (a) PSBMA hydrogel (b) GE-PSBMA comixed hydrogel (c) HA-GE nanocomposite hydrogel (d) TD@H-GE nanocomposite hydrogel (e) D@H-GE nanocomposite hydrogel
1 Xie C, Liang R, Ye J, et al. High-efficient engineering of osteo-callus organoids for rapid bone regeneration within one month [J]. Biomater., 2022, 288: 121741
2 Greca L G, Lehtonen J, Tardy B L, et al. Biofabrication of multifunctional nanocellulosic 3D structures: a facile and customizable route [J]. Mater. Horiz, 2018, 5(3): 408
3 Han Y, Yang J, Zhao W, et al. Biomimetic injectable hydrogel microspheres with enhanced lubrication and controllable drug release for the treatment of osteoarthritis [J]. Bioact. Mater., 2021, 6(10): 3596
doi: 10.1016/j.bioactmat.2021.03.022 pmid: 33869900
4 Mostakhdemin M, Nand A, Arjmandi M, et al. Mechanical and microscopical characterisation of bilayer hydrogels strengthened by TiO2 nanoparticles as a cartilage replacement candidate [J]. Mater. Today Commun., 2020, 25: 101279
5 Diao W, Wu L, Ma X, et al. Reversibly highly stretchable and self‐healable zwitterion‐containing polyelectrolyte hydrogel with high ionic conductivity for high‐performance flexible and cold‐resistant supercapacitor [J]. J. Appl. Polym. Sci., 2020, 137(34): 48995
6 Jin X, Jiang H, Qiao F, et al. Fabrication of ALGINATE‐P (SBMA‐CO-AAM) hydrogels with ultrastretchability, strain sensitivity, self-adhesiveness, biocompatibility, and self-cleaning function for stra-in sensors [J]. J. Appl. Polym. Sci., 2021, 138(3): 49697
7 Wang Z, Li J, Jiang L, et al. Zwitterionic hydrogel incorporated graphene oxide nanosheets with improved strength and lubri-city [J]. Langmuir, 2019, 35(35): 11452
8 Cui L, Tong W, Zhou H, et al. PVA-BA/PEG hydrogel with bilayer structure for biomimetic articular cartilage and investigation of its biotribological and mechanical properties [J]. J. Mater. Sci., 2021, 56(5): 3935
9 Jiang Y Y, Zhu Y J, Li H, et al. Preparation and enhanced mechanical properties of hybrid hydrogels comprising ultralong hydroxyapatite nanowires and sodium alginate [J]. J. Colloid Interface Sci., 2017, 497: 266
10 Chen T Y, Ou S F, Chien H W. Biomimetic mineralization of tannic acid-supplemented HEMA/SBMA nanocomposite hydrogels [J]. Polymers, 2021, 13(11): 1697
11 Jin X, Jiang H, Qiao F, et al. Fabrication of alginate‐P (SBMA‐co‐AAm) hydrogels with ultrastretchability, strain sensitivity, self‐adhesiveness, biocompatibility, and self‐cleaning function for strain sensors [J]. J. Appl. Polym. Sci., 2021, 138(3): 49697
12 Meng D, Zhou X, Zheng K, et al. In-situ synthesis and characterization of poly(vinyl alcohol)/hydroxyapatite composite hydrogel by freezing-thawing method [J]. Chem. Res. Chin. Univ., 2019, 35(3): 521
13 Kim S H, Lee B, Heo J H, et al. The Effect of ζ‐potential and hydrodynamic size on nanoparticle interactions in hydrogels [J]. Part. Part. Syst. Charact., 2019, 36(1): 1800292
14 Wang Y, Cao X, Ma M, et al. A GelMA-PEGDA-nHA composite hydrogel for bone tissue engineering [J]. Materials, 2020, 13(17): 3735
15 Abouzeid R E, Khiari R, Salama A, et al. In situ mineralization of nano-hydroxyapatite on bifunctional cellulose nanofiber/polyvinyl alcohol/sodium alginate hydrogel using 3D printing [J]. Int. J. Biol. Macromol, 2020, 160: 538
doi: S0141-8130(20)33342-0 pmid: 32470581
16 Pan Y, Xiong D. Study on compressive mechanical properties of nanohydroxyapatite reinforced poly (vinyl alcohol) gel composites as biomaterial [J]. J. Mater. Sci. Mater. Med., 2009, 20(6): 1291
17 Li G, Liu X N, Zhang D H, et al. Effect of surface modification of nano-hydroxyapatite on the dispersion of hydrophilic modifier [J]. Poly. Mater. Sci. Eng., 2018, 34(10): 66
李 刚, 刘晓南, 张道海 等. 亲水改性剂表面修饰纳米羟基磷灰石对其分散性的影响 [J]. 高分子材料科学与工程, 2018, 34(10): 66
18 Wang B, Yuan S, Xin W, et al. Synergic adhesive chemistry-based fabrication of BMP-2 immobilized silk fibroin hydrogel functionalized with hybrid nanomaterial to augment osteogenic differentiation of rBMSCs for bone defect repair [J]. Int. J. Biol. Macromol., 2021, 192: 407
doi: 10.1016/j.ijbiomac.2021.09.036 pmid: 34597700
19 Pang H, Ma C, Li S, et al. Tough thermosensitive hydrogel with excellent adhesion to low-energy surface developed via nanoparticle-induced dynamic crosslinking [J]. Appl. Surf. Sci., 2021, 560: 149935
20 Meng D, Zhou X, Zheng K, et al. In-situ synthesis and characterization of poly(vinyl alcohol)/hydroxyapatite composite hydrogel by freezing-thawing method [J]. Chem. Res. Chin. Univ., 2019, 35(3): 521
21 Chen Y, Zhang Y, Mensaha A, et al. A plant-inspired long-lasting adhesive bilayer nanocomposite hydrogel based on redox-active Ag/Tannic acid-Cellulose nanofibers [J]. Carbohydr. Polym., 2021, 255: 117508
22 Sun X, Li Z, Cui Z, et al. Preparation and physicochemical properties of an injectable alginate-based hydrogel by the regulated release of divalent ions via the hydrolysis of D-glucono-δ-lactone [J]. J. Biomater. Appl., 2020, 34(7): 891
23 Wang Z, Li J, Liu Y, et al. Macroscale superlubricity achieved between zwitterionic copolymer hydrogel and sapphire in water [J]. Mater. & Design, 2020, 188: 108441
24 Wang Z, Meng F, Zhang Y, et al. Low-friction hybrid hydrogel with excellent mechanical properties for simulating articular cartilage movement [J]. Langmuir, 2023, 39(6): 2368
doi: 10.1021/acs.langmuir.2c03109 pmid: 36725688
25 Han L, Liu K, Wang M, et al. Mussel-inspired adhesive and conductive hydrogel with long-lasting moisture and extreme temperature tolerance [J]. Adv. Funct. Mater., 2018, 28(3): 1704195
26 Bui H L, Nguyen C T V, Lee W-Y, et al. Dopamine-initiated photopolymerization for a versatile catechol-functionalized hydrogel [J]. ACS Appl. Bio Mater., 2021, 4(8): 6268
doi: 10.1021/acsabm.1c00564 pmid: 35006911
27 Zhong W, Xiong Y, Wang X, et al. Synthesis and characterization of multifunctional organic-inorganic composite hydrogel formed with tissue-adhesive property and inhibiting infection [J]. Mater. Sci. Eng. C, 2021, 118: 111532
28 Feng J, Dou J, Zhang Y, et al. Thermosensitive hydrogel for encapsulation and controlled release of biocontrol agents to prevent peanut aflatoxin contamination [J]. Polymers, 2020, 12(3): 547
29 Wang K, Ma Q, Zhang Y M, et al. Preparation of bacterial cellulose/silk fibroin double-network hydrogel with high mechanical strength and biocompatibility for artificial cartilage [J]. Cellulose, 2020, 27(4): 1845
30 Olvera‐Sosa M, Guerra‐Contreras A, Gómez‐Durán C F A, et al. Tuning the pH‐responsiveness capability of poly(acrylic acid‐co‐itaconic acid)/NaOH hydrogel: Design, swelling, and rust removal evaluation [J]. J. Appl. Polym. Sci., 2020, 137(8): 48403
31 Grazioli G, Silva A F, Souza J F, et al. Synthesis and characterization of poly(vinyl alcohol)/chondroitin sulfate composite hydrogels containing strontium‐doped hydroxyapatite as promising biomaterials [J]. J. Biomed. Mater. Res., 2021, 109(7): 1160
32 Huang L, Mu X, Huang W, et al. Versatile surface modification of millimeter‐scale “aqueous pearls” with nanoparticles via self‐polymerization of dopamine [J]. Polym. Adv. Technol., 2021, 32(8): 3059
33 Travaglini L, Di Gregorio M C, Severoni E, et al. Deoxycholic acid and l-Phenylalanine enrich their hydrogel properties when combined in a zwitterionic derivative [J]. J. Colloid Interface Sci., 2019, 554: 453
34 Hirayama S, Kurokawa T, Gong J P. Non-linear rheological study of hydrogel sliding friction in water and concentrated hyaluronan solution [J]. Tribol. Int., 2020, 147: 106270
35 Zhao J, Diaz-Dussan D, Wu M, et al. Dual-cross-linked network hydrogels with multiresponsive, self-healing, and shear strengthening properties [J]. Biomacromolecules, 2021, 22(2): 800
doi: 10.1021/acs.biomac.0c01548 pmid: 33320540
36 Srivastava S, Levi A E, Goldfeld D J, et al. structure, morphology, and rheology of polyelectrolyte complex hydrogels formed by self-assembly of oppositely charged triblock polyelectrolytes [J]. Macromolecules, 2020, 53(14): 5763
37 Li Z, Liu Z, Ng T Y, et al. The effect of water content on the elastic modulus and fracture energy of hydrogel [J]. Extreme Mech. Lett., 2020, 35: 100617
38 Chen S, Huang J, Zhou Z, et al. Highly elastic anti-fatigue and anti-freezing conductive double network hydrogel for human body sensors [J]. Ind. Eng. Chem. Res., 2021, 60(17): 6162
39 Li Y, Chen J, Cai P, et al. An electrochemically neutralized energy-assisted low-cost acid-alkaline electrolyzer for energy-saving electrolysis hydrogen generation [J]. J. Mater. Chem. A, 2018, 6(12): 4948
40 Shao Z, Cheng W, Hu X, et al. An anti-pressure, fatigue-resistant and rapid self-healing hydrogel based on a nano-micelle assem-bly [J]. Polym. Chem., 2020, 11(13): 2300
[1] WANG Yuzhao, JIANG Zhonghua, JIA Chunni, ZHANG Yutuo, WANG Pei. Microstructure and Mechanical Properties of an Austempered Nanostructured Bainitic Steel[J]. 材料研究学报, 2024, 38(4): 279-287.
[2] LI Yunfei, WANG Jinhe, ZHANG Long, LI Zhengkun, FU Huameng, ZHU Zhengwang, LI Hong, WANG Aimin, ZHANG Haifeng. Effect of Annealing Temperature on Microstructure and Properties of a High-entropy Alloy Fe35Ni30Cr20Al10Nb5[J]. 材料研究学报, 2024, 38(4): 241-247.
[3] YAN Junzhu, GAO Ming, YU Xiaoming, TAN Lili. Effect of Ca and Ag Content on Microstructure and Properties of Biodegradable Alloy Zn-Li-Ca-Ag[J]. 材料研究学报, 2024, 38(3): 177-186.
[4] WENG Xin, LI Qiqi, YANG Guifang, LV Yuancai, LIU Yifan, LIU Minghua. Preparation of Adsorbent Fe-loaded Cellulose/Tannin and Its Adsorption Characteristics for Fluoroquinolones Antibiotics[J]. 材料研究学报, 2024, 38(2): 92-104.
[5] LI Yuxuan, DU Yonggang, SU Junming, WANG Zhi, ZHU Yongfei. Superhydrophobic Sponge Coated with Polybenzoxazine and ZnO for Oil-Water Separation[J]. 材料研究学报, 2024, 38(1): 71-80.
[6] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[7] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[8] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[9] SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. 材料研究学报, 2023, 37(6): 443-452.
[10] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[11] CHEN Zhipeng, ZHU Zhihao, SONG Mengfan, ZHANG Shuang, LIU Tianyu, DONG Chuang. An Ultra-high-strength Ti-Al-V-Mo-Nb-Zr Alloy Designed from Ti-6Al-4V Cluster Formula[J]. 材料研究学报, 2023, 37(4): 308-314.
[12] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[13] LI Hanlou, JIAO Xiaoguang, ZHU Huanhuan, ZHAO Xiaohuan, JIAO Qingze, FENG Caihong, ZHAO Yun. Synthesis of Branched Fluorine-containing Polyesters and their Properties[J]. 材料研究学报, 2023, 37(4): 315-320.
[14] ZHAO Yunmei, ZHAO Hongze, WU Jie, TIAN Xiaosheng, XU Lei. Effect of Heat Treatment on Microstructure and Properties of TIG Welded Joints of Powder Metallurgy Inconel 718 Alloy[J]. 材料研究学报, 2023, 37(3): 184-192.
[15] LIU Dongyang, TONG Guangzhe, GAO Wenli, WANG Weikai. Anisotropy of 2060 Al-Li Alloy Thick Plate[J]. 材料研究学报, 2023, 37(3): 235-240.
No Suggested Reading articles found!