Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (4): 279-287    DOI: 10.11901/1005.3093.2023.370
ARTICLES Current Issue | Archive | Adv Search |
Microstructure and Mechanical Properties of an Austempered Nanostructured Bainitic Steel
WANG Yuzhao1, JIANG Zhonghua2(), JIA Chunni2, ZHANG Yutuo1,2(), WANG Pei2
1.School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159, China
2.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

WANG Yuzhao, JIANG Zhonghua, JIA Chunni, ZHANG Yutuo, WANG Pei. Microstructure and Mechanical Properties of an Austempered Nanostructured Bainitic Steel. Chinese Journal of Materials Research, 2024, 38(4): 279-287.

Download:  HTML  PDF(17674KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Based on Thermo-Calc calculation, a nanostructured bainite steel, which is suitable for making steel wire, with composition of Fe-0.8C-2Mn-1.5Si-1.5Cr-0.25Mo-0.25Ni-1Al-0.25Co-0.1V was designed. The influence of austempering treatment on microstructure and mechanical properties of the steel was investigated by means of scanning electron microscope (SEM), X-ray diffractometer (XRD), transmission electron microscope (TEM), thermal dilatometer, and tensile tester in terms of microstructures, thermal and mechanical properties etc. Results show that after austempering at lower temperature, the microstructure of the nanostructured bainitic steel is composed of nanostructured bainite ferrite lath, retained austenite and a little proportion of martensite. With the increase of austempering temperature, the transformation rate and the volume fraction of bainite ferrite increase. As the austempering time increases, the volume fraction of bainite ferrite increases, while the amount of undercooled austenite decreases, and the size and volume fraction of the massive M/A islands obtained at room temperature decrease. Due to the carbon partitioning sufficiently between the bainite ferrite and austenite, the stability of undercooled austenite is improved, and the proportion of brittle martensite in M/A islands is reduced significantly. This induces the transition of tensile fracture from mixed fracture to quasi-cleavage fracture. After being heated at 230oC for 48 hours, the tensile strength and yield strength of the experimental steel were 1625 and 1505 MPa, respectively, with an elongation of 34.5%, indicating the best match for strength and toughness.

Key words:  metallic materials      austempering      microstructure      mechanical properties      nanostructured bainite ferrite      retained austenite     
Received:  25 July 2023     
ZTFLH:  TG142.1  
Fund: Liaoning Postdoctoral Innovation Foundation(2020-BS-010)
Corresponding Authors:  JIANG Zhonghua, Tel: 18204080610, E-mail: zhjiang12s@imr.ac.cn;

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.370     OR     https://www.cjmr.org/EN/Y2024/V38/I4/279

CSiMnMoCrNiAlCoVFe
0.791.552.040.251.560.250.950.250.10Bal.
Table 1  Chemical composition of experimental steel (mass fraction, %)
Fig.1  Dilation-temperature curve of experimental steel
Fig.2  Illustration of austempering treatment
Fig.3  Illustration of tensile sample
Fig.4  Bainite transformation curves of experimental steel under different austempering treatments (a) Dilation-time curve and (b) Bainite transformation rate-time curve
Fig.5  SEM analysis of the experimental steel under different austempering processes (a) 230-8 h, (b) 230-16 h, (c) 230-48 h (d), 270-8 h, (e) 270-16 h, (f) 270-48 h
Fig.6  TEM bright field image of typical microstructure of experimental steel austempered at 270oC (a) low-magnification TEM image, (b) high-magnification TEM image
Fig.7  EBSD diagram of local microstructure of experimental steel after isothermal treatment at different quenching temperatures for 48 h (a) IPF diagram of 230-48 h sample, (b) BC diagram of 230-48 h sample, (c) IPF diagram of 270-48 h sample, (d) BC diagram of 270-48 h sample
Fig.8  XRD patterns of experimental steel after different austempering treatments
Austempering treatmentsVolume fraction of retained austenite / %Carbon content in retained austenite / %Volume fraction of M/A island / %
Temperature / oCTime / h
230828.9 ± 2.01.72 ± 0.04113.56 ± 5.71
1636.9 ± 2.51.81 ± 0.0222.15 ± 0.54
4841.1 ± 0.81.80 ± 0.0081.29 ± 0.42
270830.3 ± 5.21.45 ± 0.0597.99 ± 1.29
1634.1 ± 0.31.74 ± 0.0396.36 ± 2.30
4845.6 ± 1.81.73 ± 0.0184.29 ± 0.96
Table 2  Volume fraction of retained austenite, carbon content in retained austenite and the volume fraction of M/A island in the samples with different austempering treatments
Fig.9  True stress-strain curves of experimental steel after different austempering treatments
Austempering treatmentsTensile strength / MPaYield strength / MPaElongation / %
Temperature / oCTime / h
23081872 ± 14.81220 ± 2.117.5 ± 0.35
161667 ± 0.711524 ± 23.227.5 ± 0.71
481625 ± 4.21505 ± 24.234.5 ± 3.89
27081804 ± 43.11771 ± 0.72 ± 0.1
161773 ± 0.71556 ± 59.821.5 ± 0.1
481836 ± 0.71714 ± 1.418 ± 0.35
Table 3  Tensile properties of experimental steel after different austempering treatments
Fig.10  SEM analysis of experimental steel under different austempering treatment (a, d) 230-8 h, (b, e) 230-16 h, (c, f) 230-48 h, (g, j) 270-8 h (h, k) 270-16 h, (i, l) 270-48 h
1 Su J, Ding Y L, Yang Z Y, et al. Development of nanostructured bainite transformation acceleration technology [J]. J. Iron Steel Res., 2022, 34(10): 1023
doi: 10.13228/j.boyuan.issn1001-0963.20210414
苏 杰, 丁雅莉, 杨卓越 等. 纳米贝氏体钢相变加速技术开发进展 [J]. 钢铁研究学报, 2022, 34(10): 1023
2 Bhadeshia H K D H. The first bulk nanostructured metal [J]. Sci. Technol. Adv. Mater., 2013, 14: 1
3 Garcia-Mateo C, Caballero F G, Sourmail T, et al. Tensile behaviour of a nanocrystalline bainitic steel containing 3wt% silicon [J]. Mater. Sci. Eng. A, 2012, 549(15): 185
4 Bhadeshia H K D H. Nanostructured bainite [J]. Proceedings of the Royal Society A, 2010, 466: 3
5 Kumar A, Singh A. Microstructural effects on the sub-critical fatigue crack growth in nanobainite [J]. Mater. Sci. Eng. A, 2019, 743(16): 464
6 Ling Y, Hu F, Yan H, et al. Microstructural transformation and plasticity mechanism of 2 GPa medium-carbon medium-manganese nano-bainitic steel [J]. Iron & Steel, 2022, 57(11): 131
凌 雨, 胡 锋, 严 恒 等. 2 GPa中碳中锰纳米贝氏体钢的相变和塑性机理 [J]. 钢铁, 2022, 57(11): 131
7 Feng F F, Wu H B, Yu X P. Thermal stability of nanoscale bainite/martensite steel [J]. Chin. J. Mater. Res., 2019, 33(8): 6
冯凡凡, 武会宾, 于新攀. 纳米贝氏体/马氏体钢的热稳定性 [J]. 材料研究学报, 2019, 33(8): 6
8 Kumar A, Singh A. Deformation mechanisms in nanostructured bainitic steels under torsion [J]. Mater. Sci. Eng. A, 2020, 770(7):138528
9 Dijk NHV, Butt AM, Zhao L, et al. Thermal stability of retained austenite in TRIP steels studied by synchrotron X-ray diffraction during cooling [J]. Acta Mater., 2005, 53(20): 5439
10 De Knijf D, Petrov R, Foejer C, et al. Effect of fresh martensite on the stability of retained austenite in quenching and partitioning steel [J]. Mater. Sci. Eng. A, 2014, 615(6): 107
11 Turteltaub S, Suiker A S J. Grain size effects in multiphase steels assisted by transformation-induced plasticity [J]. Int. J. Solids. Struct., 2006, 43(24): 7322
12 Luo P, Gao G H, Zhang H, et al. On structure-property relationship in nanostructured bainitic steel subjected to the quenching and partitioning process [J]. Mater. Sci. Eng. A, 2016, 661: 1
13 Avishan B, Yazdani S, Nedjad S H. Toughness variations in nanostructured bainitic steels [J]. Mater. Sci. Eng. A, 2012, 548: 106
14 Kumar A, Singh A. Improvement of strength-toughness combination in nanostructured bainite [A]. Proceedings of the 22nd European Conference on Fracture (ECF)-Loading and Environmental Effects on Structural Integrity [C]. Belgrade, 2018
15 Caballero F G, Garcia-Mateo C, Miller M K. Design of novel bainitic steels: moving from ultrafine to nanoscale structures [J]. JOM, 2014, 66(5): 747
16 Agrawal M, Bhuyan D, Pandey R K, et al. Effect of electropulsing on nanostructured bainitic steel [J]. J. Mater. Eng. Perform., 2022, 31(5): 4187
17 Babu S S, Specht E D, David S A, et al. In-situ observations of lattice parameter fluctuations in austenite and transformation to bainite [J]. Metall. Mater. Trans. A, 2005, 36A(12) : 3281
18 Rementeria R, Capdevila C, Dominguea-Reyes R, et al. Carbon clustering in low-temperature bainite [J]. Metall. Mater. Trans. A, 2018, 49A(11) : 5277
19 Gupta S K, Manna R, Chattopadhyay K. Ductilization of high carbon, high silicon carbide-free nanostructured bainitic steel [J]. Mater. Sci. Eng. A, 2022, 860(6): 144318
20 Morales-Rivas L, Yen H W, Huang B M, et al. Tensile response of two nanoscale bainite composite-like structures [J]. JOM, 2015, 67(10): 2223
21 Ding R, Dai Z, Huang M, et al. Effect of pre-existed austenite on austenite reversion and mechanical behavior of an Fe-0.2C-8Mn-2Al medium Mn steel [J]. Acta Mater., 2018, 147: 59
22 Jeom Y C, Jung H J, Si W H, et al. Strain induced martensitic transformation of Fe-20Cr-5Mn-0.2Ni duplex stainless steel during cold rolling: Effects of nitrogen addition [J]. Mater. Sci. Eng. A, 2011, 528: 6012
[1] LI Jing, XU Yingchao, FAN Haoshuang, LU Yi, LI Li, ZHANG Xianyu. Preparation and Luminescence Properties of a Novel Double Perovskite Ca2GdSbO6:Sm3+ Reddish-orange Phosphor[J]. 材料研究学报, 2024, 38(4): 288-296.
[2] WANG Zhongnan, GUO Hui, MU Yueshan. Preparation and Properties of Nanocomposite Hydrogel with Dopamine Modification[J]. 材料研究学报, 2024, 38(4): 269-278.
[3] LI Yunfei, WANG Jinhe, ZHANG Long, LI Zhengkun, FU Huameng, ZHU Zhengwang, LI Hong, WANG Aimin, ZHANG Haifeng. Effect of Annealing Temperature on Microstructure and Properties of a High-entropy Alloy Fe35Ni30Cr20Al10Nb5[J]. 材料研究学报, 2024, 38(4): 241-247.
[4] TIAN Songwen, LIU Lirong, TIAN Sugui. Creep Behavior and Mechanism of a Re/Ru-containing Nickel-based Single Crystal Superalloy[J]. 材料研究学报, 2024, 38(4): 248-256.
[5] WU Houran, DUAN Tigang, MA Li, SHAO Gangqin, ZHANG Hengyu, ZHANG Haibing. Electrochemical Performance of Al-Zn-In-Mg-Ga-Mn Alloys as Anodes for Al-Air Batteries[J]. 材料研究学报, 2024, 38(4): 257-268.
[6] LIU Rui, ZHANG Dingdong, ZHANG Hui, REN Wencai, DU Jinhong. Effects of the Thickness of the Hole Transport Layer on the Performance of Graphene-based Organic Light-emitting Diodes[J]. 材料研究学报, 2024, 38(3): 168-176.
[7] QI Kaili, HU Dejiang, GAO Chong, LIU Feng, PANG Jianchao, SHAO Chenwei, YANG Mengqi, LI Shouxin, ZHANG Zhefeng. Notch Tensile Properties Prediction of Low-alloy Steel Processed by Different Tempering Temperatures[J]. 材料研究学报, 2024, 38(3): 197-207.
[8] YAN Junzhu, GAO Ming, YU Xiaoming, TAN Lili. Effect of Ca and Ag Content on Microstructure and Properties of Biodegradable Alloy Zn-Li-Ca-Ag[J]. 材料研究学报, 2024, 38(3): 177-186.
[9] LIU Chenye, LUO Tianjiao, LI Yingju, FENG Xiaohui, HUANG Qiuyan, ZHENG Ce, ZHU Cheng, YANG Yuansheng. Microstructure and Properties of As-cast Mg-8Zn-4Al-0.5Cu-0.5Mn-xLi Alloys with High Modulus[J]. 材料研究学报, 2024, 38(3): 187-196.
[10] YIN Yanchao, LV Yifan, LIU Qianli, XU Yali, JIANG Peng, YU Wei. Tensile Behavior and Plastic Deformation Mechanism of Ti-Al-Fe Alloy at Room Temperature and Liquid Nitrogen Temperature[J]. 材料研究学报, 2024, 38(3): 232-240.
[11] ZHOU Lichen. Preparation of Fluorine Modified Titanium Dioxide Catalyst and Its Photocatalytic Degradation for Oilfield Wastewater[J]. 材料研究学报, 2024, 38(2): 141-150.
[12] ZHENG Mingrui, LI Yawei, LIU Jing, WANG Li, ZHENG Wei, DONG Jiasheng, ZHANG Jian, LOU Langhong. Effect of Notch Orientation and Temperature on Thermal Fatigue Behavior of a Third-Generation Single Crystal Superalloy DD33[J]. 材料研究学报, 2024, 38(2): 111-120.
[13] HAO Wenjun, JING Hemin, XI Tong, YANG Chunguang, YANG Ke. Effect of Austenitizing Temperature on Microstructure and Properties of High Carbon Cu-bearing Martensitic Stainless Steel[J]. 材料研究学报, 2024, 38(2): 121-129.
[14] ZENG Daoping, AN Tongbang, ZHENG Shaoxian, DAI Haiyang, CAO Zhilong, MA Chengyong. Fracture Toughness of Weld Metal of 440 MPa Grade High-strength Steel[J]. 材料研究学报, 2024, 38(2): 151-160.
[15] LIU Zhenhuan, LI Yonghan, LIU Yang, WANG Pei, LI Dianzhong. Carbide Evolution Behavior of GCr15 Bearing Steel During Aging Process[J]. 材料研究学报, 2024, 38(2): 130-140.
No Suggested Reading articles found!