Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (4): 257-268    DOI: 10.11901/1005.3093.2023.256
ARTICLES Current Issue | Archive | Adv Search |
Electrochemical Performance of Al-Zn-In-Mg-Ga-Mn Alloys as Anodes for Al-Air Batteries
WU Houran1,2, DUAN Tigang2(), MA Li2, SHAO Gangqin1(), ZHANG Hengyu2, ZHANG Haibing2
1.State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
2.National State Key Laboratory for Marine Corrision and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China
Cite this article: 

WU Houran, DUAN Tigang, MA Li, SHAO Gangqin, ZHANG Hengyu, ZHANG Haibing. Electrochemical Performance of Al-Zn-In-Mg-Ga-Mn Alloys as Anodes for Al-Air Batteries. Chinese Journal of Materials Research, 2024, 38(4): 257-268.

Download:  HTML  PDF(15768KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The free corrosion behavior and electrochemical properties of Al-Zn-In-Mg-Ga-Mn alloys, as anodes working with 2 mol/L NaCl and 4 mol/L KOH electrolytes were studied. Results revealed that in the two electrolytes, the corrosion potential (Ecorr) of alloy anodes shifted negatively by 0.041 V and 0.018 V, and the free corrosion rates decreased by 0.2146 and 15.1 mg·cm-2·h-1, respectively in the contrast to those of pure Al anode. The electrochemical activity of pure Al anode was improved, while its free corrosion behavior was inhibited. In the 2 mol/L NaCl electrolyte, the discharge capacity peak of the alloy anode reached 2608.96 Ah·kg-1, which was 55.59% higher than that of the pure Al anode. The highest energy density attained 1742.61 Wh·kg-1, being 274.58% superior to that of the pure Al anode. The anode efficiency was 87.55%. In the 4 mol/L KOH electrolyte, the highest discharge capacity of the Al-Zn-In-Mg-Ga-Mn alloy anode was 1605.15 Ah·kg-1, which was 131.27% higher than that of the pure Al anode. The highest energy density was 1404.83 Wh·kg-1, which was 231.52% higher than that of the pure Al anode. The anode efficiency was 53.86%.

Key words:  metallic materials      Al-Zn-In-Mg-Ga-Mn alloy      aluminum-air battery      electrochemical performance      corrosion behavior     
Received:  08 May 2023     
ZTFLH:  TQ152  
Fund: National Key R&D Program of China(2022YFB3808800)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.256     OR     https://www.cjmr.org/EN/Y2024/V38/I4/257

Fig.1  Schematic diagram of the battery discharge test system
Fig.2  XRD patterns of pure Al and Al-Zn-in-Mg-Ga-Mn alloy (a), grain size distribution of Al-Zn-In-Mg-Ga-Mn alloy (b) and inverse polar figure (c) of Al-Zn-In-Mg-Ga-Mn alloy
Fig.3  Bar charts of free corrosion rates (a) and average corrosion depths (b) of pure Al and Al-Zn-In-Mg-Ga-Mn anodes in 2 mol/L NaCl and 4 mol/L KOH solutions
SolutionsSamples∆W/ mgFree corrosion rate / mg·cm-2·h-1Average corrosion depth / mmMaximum corrosion depth / mm
2 mol/L NaClPure Al11.70.24380.1230.18
Al-Zn-In-Mg-Ga-Mn1.40.02920.0660.12
4 mol/L KOHPure Al84.042.00.3770.70
Al-Zn-In-Mg-Ga-Mn53.826.90.2390.37
Table 1  Free corrosion parameters of pure Al and Al-Zn-In-Mg-Ga-Mn anodes in 2 mol/L NaCl and 4 mol/L KOH solutions
Fig.4  Morphology of free corrosion products (a, c, e, g) and surface morphology (b, d, f, h) of pure Al and Al-Zn-in-Mg-Ga-Mn anodes in 2 mol/L NaCl and 4 mol/L KOH solutions: pure Al in 2 mol/L NaCl solution (a, b); Al-Zn-In-Mg-Ga-Mn alloy in 2 mol/L NaCl solution (c, d); pure Al in 4 mol/L KOH solution (e, f); Al-Zn-In-Mg-Ga-Mn alloy in 4 mol/L KOH solution (g, h)
Fig.5  Open circuit potential of pure Al and Al-Zn-In-Mg-Ga-Mn anodes in 2 mol/L NaCl and 4 mol/L KOH solutions
Fig.6  Potentiodynamic polarization curves of pure Al and Al-Zn-In-Mg-Ga-Mn anodes in 2 mol/L NaCl and 4 mol/L KOH solutions
SolutionsSamplesEcorr / V vs. Ag/AgClIcorr / mA·cm-2-βc / mV·dec-1βa / mV·dec-1Rp / Ω·cm2
2 mol/L NaClPure Al-1.1385.158 × 10-395.082.23709.851
Al-Zn-In-Mg-Ga-Mn-1.1795.978 × 10-388.0116.23637.334
4 mol/L KOHPure Al-1.5683.4375 × 102293.4325.62.641
Al-Zn-In-Mg-Ga-Mn-1.5864.7838 × 102310.8455.00.168
Table 2  Corrosion parameters of pure Al and Al-Zn-in-Mg-Ga-Mn anodes in 2 mol/L NaCl and 4 mol/L KOH solutions
Fig.7  Nyquist and Bode plots of pure Al and Al-Zn-in-Mg-Ga-Mn anodes: in 2 mol/L NaCl solution (a, b); in 4 mol/L KOH solution (c, d)
Parameters

Al-Zn-In-Mg-Ga-Mn

(in 2 mol/L NaCl)

Pure Al

(in 2 mol/L NaCl)

Al-Zn-In-Mg-Ga-Mn

(in 4 mol/L KOH)

Pure Al

(in 4 mol/L KOH)

L1 / H·cm2--1.153 × 10-61.134 × 10-6
Rs / Ω·cm22.2052.5670.77061.212
CPE1 / F·cm-21.484 × 10-48.184 × 10-50.301713.33
n1 (0 < n1 < 1)0.82590.87930.58570.6489
Rt / Ω·cm2521.1830.70.020.01285
CPE2 / F·cm-20.052179.455 × 10-70.21641.4 × 10-17
n2 (0 < n2 < 1)1110.4314
R2 / Ω·cm2167.4329.90.36050.5716
L2 / H·cm236.97427.21.1160.9376
Rl / Ω·cm2503.4872.10.230.2867
Table 3  Fitted EIS parameters
Fig.8  Voltage-time curve of pure Al and Al-Zn-In-Mg-Ga-Mn anodes after discharged at current density of 0.1, 1, 5, 10 mA·cm-2, respectively, in 2 mol/L NaCl and 4 mol/L KOH electrolytes
Fig.9  Discharge characteristics (a) and anode efficiencies (b) of pure Al and Al-Zn-In-Mg-Ga-Mn anodes at 0.1, 1, 5,10 mA·cm-2 discharge in 2 mol/L NaCl and 4 mol/L KOH electrolytes
SamplesEcorr / VQ / Ah·kg-1η / %Refs.
Al-3Zn-0.02In-1.237 (in 4 mol/L NaOH)--[1]
Al-5Zn-0.03In-0.857 (in 3.5% NaCl, mass fraction)2340 (at 1 mA·cm-2)78.52[48]
Al-4.5Zn-0.05In-1.411 (in 4 mol/L NaOH)1595.20 (at 10 mA·cm-2)53.53[32]
Al-5Zn-0.03In-1Er-0.738 (in 3.5%NaCl, mass fraction)2414 (at 1 mA·cm-2)81[48]
Al-4.5Zn-0.05In-0.05Ga-1.457 (in 4 mol/L NaOH)< 1600 (at 10 mA·cm-2)< 53.69[14]
Al-4.5Zn-0.05In-0.05Sn-1.496 (in 4 mol/L NaOH)< 1600 (at 10 mA·cm-2)< 53.69[14]
Al-4.5Zn-0.05In-0.05Bi-1.474 (in 4 mol/L NaOH)< 1600 (at 10 mA·cm-2)< 53.69[14]
Al-4.5Zn-0.05In-0.05Sn-1.496 (in 4 mol/L NaOH)1548.11 (at 10 mA·cm-2)51.95[32]
Al-5.5Zn-0.02In-0.1Si-0.459 (in sea water)2569 (at 0.4~4.0 mA·cm-2)86.21[31]
Al-6Zn-0.02In-1.6Mg-0.06Ti-0.484 (in sea water)2486 (at 0.4~4.0 mA·cm-2)83.42[31]
Al-1Zn-0.1In-0.1Sn-0.5Mg-0.1Mn-1.535 (in 4 mol/L NaOH)1481 (at 20 mA·cm-2)49.75[33]
This work (Al-Zn-In-Mg-Ga-Mn)-0.98 (in 2 mol/L NaCl)2608.96 (at 10 mA·cm-2, in 2 mol/L NaCl)87.55*
-1.387 (in 4 mol/L KOH)1605.15 (at 10 mA·cm-2, in 4 mol/L KOH)53.86
Table 4  Recent studies on the performance of Al-Zn-In and Al-Zn-In-based alloys related to aluminum air batteries
Fig.10  Corrosion morphology (SEM images, left) and elemental distribution (EDS mappings, right) of pure Al and Al-Zn-In-Mg-Ga-Mn anodes after discharged for 3 h at 10 mA·cm-2 in 2 mol/L NaCl and 4 mol/L KOH electrolytes, respectively: pure Al and Al-Zn-In-Mg-Ga-Mn alloy in 2 mol/L NaCl solution (a, b); pure Al and Al-Zn-In-Mg-Ga-Mn alloy in 4 mol/L KOH solution (c, d)
Fig.11  Surface morphology of pure Al and Al-Zn-In-Mg-Ga-Mn anodes after discharged for 3 h at 10 mA·cm-2 in 2 mol/L NaCl and 4 mol/L KOH electrolytes, respectively: pure Al and Al-Zn-In-Mg-Ga-Mn alloy in 2 mol/L NaCl solution (a, b); pure Al and Al-Zn-In-Mg-Ga-Mn alloy in 4 mol/L KOH solution (c, d)
Fig.12  Discharge schematic diagram of aluminum-air battery: aluminum-air battery system (a); Al-Zn-In-Mg-Ga-Mn alloy anode (b); MnO2 air cathode (c)
1 Linjee S, Moonngam S, Klomjit P, et al. Corrosion behaviour improvement from the ultrafine-grained Al-Zn-In​ alloys in Al-air battery [J]. Energy Rep., 2022, 8: 5117
2 Zhang Z K, Wang Y B, Wei X F, et al. High energy efficiency and high discharge voltage of 2N-purity Al-based anodes for Al-air battery by simultaneous addition of Mn, Zn and Ga [J]. J. Power Sources, 2023, 563: 232845
3 Salado M, Lizundia E. Advances, challenges, and environmental impacts in metal-air battery electrolytes [J]. Mater. Today Energy, 2022, 28: 101064
4 Baek M J, Choi J, Wi T U, et al. Strong interfacial energetics between catalysts and current collectors in aqueous sodium-air batteries [J]. J. Mater. Chem., 2022, 10A(9) : 4601
5 Buckingham R, Asset T, Atanassov P. Aluminum-air batteries: a review of alloys, electrolytes and design [J]. J. Power Sources, 2021, 498: 229762
6 Feng Z Z, Mei D, Zhu S J, et al. Research progress of anode materials for primary magnesium-air batteries [J]. Dev. Appl. Mater., 2022, 37(6): 12
冯壮壮, 梅 迪, 朱世杰 等. 一次镁空气电池阳极材料研究进展 [J]. 材料开发与应用, 2022, 37(6): 12
7 Tzeng Y C, Chen R Y. The effect of the Zn content on the electrochemical performance of Al-Zn-Sn-Ga alloys [J]. Mater. Chem. Phys., 2023, 299: 127510
8 Zhao Q, Zheng J X, Deng Y, et al. Regulating the growth of aluminum electrodeposits: towards anode-free Al batteries [J]. J. Mater. Chem., 2020, 8A(44) : 23231
9 Wang Y Y, Liu H L, Jia Z M, et al. The electrochemical performance of Al-Mg-Ga-Sn-xBi alloy used as the anodic material for Al-air battery in KOH electrolytes [J]. Crystals, 2022, 12(12): 1785
10 Abbas M, Sadawy M M, Hosny A M. Microstructure and electrochemical properties of Al-5Zn-0.2Sn-0.2Bi-xSb as a novel electrode for batteries applications [J]. J. Alloys Compd., 2022, 923: 166303
11 Liang R, Su Y, Sui X L, et al. Effect of Mg content on discharge behavior of Al-0.05Ga-0.05Sn-0.05Pb-xMg alloy anode for aluminum-air battery [J]. J. Solid State Electrochem., 2019, 23(1): 53
12 Zhou S G, Tian C, Alzoabi S, et al. Performance of an Al-0.08Sn-0.08Ga-xMg alloy as an anode for Al-air batteries in alkaline electrolytes [J]. J. Mater. Sci., 2020, 55: 11477
13 Ren J M, Ma J B, Zhang J, et al. Electrochemical performance of pure Al, Al-Sn, Al-Mg and Al-Mg-Sn anodes for Al-air batteries [J]. J. Alloys Compd., 2019, 808: 151708
14 Zhang H T, Zheng Y Q, Yin G, et al. The influence of Ga, Sn, or Bi addition on the electrochemical behavior and discharge performance of Al-Zn-In anodes for Al-air batteries [J]. J. Mater. Sci., 2021, 56(18): 11011
15 Wang Q, Miao H, Xue Y J, et al. Performances of an Al-0.15Bi-0.15Pb-0.035 Ga alloy as an anode for Al-air batteries in neutral and alkaline electrolytes [J]. RSC Adv., 2017, 7(42): 25838
16 Senel E, Nisancioglu K. Role of dealloying on the electrochemical behaviour of aluminium alloyed with trace amounts of gallium [J]. Corros. Sci., 2014, 85: 436
17 Wu Z B, Zhang H T, Guo C, et al. Effects of indium, gallium, or bismuth additions on the discharge behavior of Al-Mg-Sn-based alloy for Al-air battery anodes in NaOH electrolytes [J]. J. Solid State Electrochem., 2019, 23(8): 2483
18 Zhuang Z H, Feng Y, Peng C Q, et al. Effect of Ga on microstructure and electrochemical performance of Al-0.4Mg-0.05Sn-0.03Hg alloy as anode for Al-air batteries [J]. Trans. Nonferrous Met. Soc. China, 2021, 31(9): 2558
19 Sun Z G, Lu H M. Performance of Al-0.5In as anode for Al-Air battery in inhibited alkaline solutions [J]. J. Electrochem. Soc., 2015, 162(8): A1617
20 Park I J, Choi S R, Kim J G. Aluminum anode for aluminum-air battery-Part II: influence of In addition on the electrochemical characteristics of Al-Zn alloy in alkaline solution [J]. J. Power Sources, 2017, 357: 47
21 Zhang C, Wang R C, Feng Y, et al. Effects of alloying elements on electrochemical performance of aluminum anodes [J]. J. Central South Univ. (Sci. Technol.), 2012, 43(1): 81
张 纯, 王日初, 冯 艳 等. 合金元素对铝阳极电化学性能的影响 [J]. 中南大学学报(自然科学版), 2012, 43(1): 81
22 Herraiz-Cardona I, Ortega E, Pérez-Herranz V. Impedance study of hydrogen evolution on Ni/Zn and Ni-Co/Zn stainless steel based electrodeposits [J]. Electrochim. Acta, 2011, 56(3): 1308
23 He J G, Wen J B, Li X D, et al. Influence of Ga and Bi on electrochemical performance of Al-Zn-Sn sacrificial anodes [J]. Trans. Nonferrous Met. Soc. China, 2011, 21(7): 1580
24 Graver B, van Helvoort A T J, Nisancioglu K. Effect of heat treatment on anodic activation of aluminium by trace element indium [J]. Corros. Sci., 2010, 52(11): 3774
25 Wu Z B, Zhang H T, Nagaumi H, et al. Effect of microstructure evolution on the discharge characteristics of Al-Mg-Sn-based anodes for Al-air batteries [J]. J. Power Sources, 2022, 521: 230928
26 Wu Z B, Zhang H T, Zou J, et al. Effect of microstructure on discharge performance of Al-0.8 Sn-0.05Ga-0.9Mg-1.0Zn (wt.%) alloy as anode for seawater-activated battery [J]. Mater. Corros., 2020, 71(10): 1680
27 Zhang C, Cai Z Y, Wang R C, et al. Enhancing the electrochemical performance of Al-Mg-Sn-Ga alloy anode for Al-air battery by solution treatment [J]. J. Electrochem. Soc., 2021, 168(3): 030519
28 Li Y W, Wang Y C, Zhang S M, et al. Corrosion inhibition of aromatic acids on Al-7075 anode for Al-air batteries with alkaline electrolyte [J]. J. Power Sources, 2022, 523: 231042
29 Gelman D, Lasman I, Elfimchev S, et al. Aluminum corrosion mitigation in alkaline electrolytes containing hybrid inorganic/organic inhibitor system for power sources applications [J]. J. Power Sources, 2015, 285: 100
30 Wu S A, Zhang Q, Sun D, et al. Understanding the synergistic effect of alkyl polyglucoside and potassium stannate as advanced hybrid corrosion inhibitor for alkaline aluminum-air battery [J]. Chem. Eng. J., 2020, 383: 123162
31 Wang H H, Du M, Liang H, et al. Study on Al-Zn-in alloy as sacrificial anodes in seawater environment [J]. J. Ocean Univ. China, 2019, 18: 889
32 Wu Z B, Zhang H T, Yang D H, et al. Electrochemical behaviour and discharge characteristics of an Al-Zn-In-Sn anode for Al-air batteries in an alkaline electrolyte [J]. J. Alloys Compd., 2020, 837: 155599
33 Zhang W F, Hu T R, Chen T, et al. Electrochemical performance of Al-1Zn-0.1In-0.1Sn-0.5Mg-xMn (x = 0, 0.1, 0.2, 0.3) alloys used as the anode of an Al-air battery [J]. Processes, 2022, 10(2): 420
34 Wu P F, Wu S A, Sun D, et al. A review of al alloy anodes for Al-Air batteries in neutral and alkaline aqueous electrolytes [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34(3): 309
35 Kaewmaneekul T, Lothongkum G. Effect of aluminium on the passivation of zinc-aluminium alloys in artificial seawater at 80oC [J]. Corros. Sci., 2013, 66: 67
36 Ma J L, Wen J B, Zhu H X, et al. Electrochemical performances of Al-0.5Mg-0.1Sn-0.02In alloy in different solutions for Al-air battery [J]. J. Power Sources, 2015, 293: 592
37 Zhu C, Yang H X, Wu A Q, et al. Modified alkaline electrolyte with 8-hydroxyquinoline and ZnO complex additives to improve Al-air battery [J]. J. Power Sources, 2019, 432: 55
38 Egan D R, de León C P, Wood R J K, et al. Developments in electrode materials and electrolytes for aluminium-air batteries [J]. J. Power Sources, 2013, 236: 293
39 Wu Z B, Zhang H T, Zou J, et al. Enhancement of the discharge performance of Al-0.5Mg-0.1Sn-0.05Ga (wt.%) anode for Al-air battery by directional solidification technique and subsequent rolling process [J]. J. Alloys Compd., 2020, 827: 154272
40 Ma J L, Wen J B, Ren F Z, et al. Electrochemical performance of Al-Mg-Sn based alloys as anode for Al-air battery [J]. J. Electrochem. Soc., 2016, 163(8): A1759
41 Ma J L, Wen J B, Gao J W, et al. Performance of Al-0.5 Mg-0.02 Ga-0.1 Sn-0.5 Mn as anode for Al-air battery in NaCl solutions [J]. J. Power Sources, 2014, 253: 419
42 Liu X, Zhang P J, Xue J L, et al. High energy efficiency of Al-based anodes for Al-air battery by simultaneous addition of Mn and Sb [J]. Chem. Eng. J., 2021, 417: 128006
43 Feng Y, Li X G, Wang R C, et al. Influence of cerium on microstructures and electrochemical properties of Al-Mg-Sn-Hg anode materials for seawater battery [J]. J. Rare Earths, 2015, 33(9): 1010
44 Liu X, Xue J L, Zhang P J, et al. Effects of the combinative Ca, Sm and La additions on the electrochemical behaviors and discharge performance of the as-extruded AZ91 anodes for Mg-air batteries [J]. J. Power Sources, 2019, 414: 174
45 Zhang P J, Liu X, Xue J L, et al. The role of microstructural evolution in improving energy conversion of Al-based anodes for metal-air batteries [J]. J. Power Sources, 2020, 451: 227806
46 Newman R C. Local chemistry considerations in the tunnelling corrosion of aluminium [J]. Corros. Sci., 1995, 37(3): 527
47 Li L, Liu H, Yan Y, et al. Effects of alloying elements on the electrochemical behaviors of Al-Mg-Ga-In based anode alloys [J]. Int. J. Hyd. Energy, 2019, 44(23): 12073
48 Yu M Z, Cui J, Tang Z C, et al. Effect of Er-rich precipitates on microstructure and electrochemical behavior of the Al-5Zn-0.03In alloy [J]. Metals, 2022, 12(1): 131
[1] LI Jing, XU Yingchao, FAN Haoshuang, LU Yi, LI Li, ZHANG Xianyu. Preparation and Luminescence Properties of a Novel Double Perovskite Ca2GdSbO6:Sm3+ Reddish-orange Phosphor[J]. 材料研究学报, 2024, 38(4): 288-296.
[2] WANG Yuzhao, JIANG Zhonghua, JIA Chunni, ZHANG Yutuo, WANG Pei. Microstructure and Mechanical Properties of an Austempered Nanostructured Bainitic Steel[J]. 材料研究学报, 2024, 38(4): 279-287.
[3] LI Yunfei, WANG Jinhe, ZHANG Long, LI Zhengkun, FU Huameng, ZHU Zhengwang, LI Hong, WANG Aimin, ZHANG Haifeng. Effect of Annealing Temperature on Microstructure and Properties of a High-entropy Alloy Fe35Ni30Cr20Al10Nb5[J]. 材料研究学报, 2024, 38(4): 241-247.
[4] TIAN Songwen, LIU Lirong, TIAN Sugui. Creep Behavior and Mechanism of a Re/Ru-containing Nickel-based Single Crystal Superalloy[J]. 材料研究学报, 2024, 38(4): 248-256.
[5] LIU Rui, ZHANG Dingdong, ZHANG Hui, REN Wencai, DU Jinhong. Effects of the Thickness of the Hole Transport Layer on the Performance of Graphene-based Organic Light-emitting Diodes[J]. 材料研究学报, 2024, 38(3): 168-176.
[6] QI Kaili, HU Dejiang, GAO Chong, LIU Feng, PANG Jianchao, SHAO Chenwei, YANG Mengqi, LI Shouxin, ZHANG Zhefeng. Notch Tensile Properties Prediction of Low-alloy Steel Processed by Different Tempering Temperatures[J]. 材料研究学报, 2024, 38(3): 197-207.
[7] LIU Chenye, LUO Tianjiao, LI Yingju, FENG Xiaohui, HUANG Qiuyan, ZHENG Ce, ZHU Cheng, YANG Yuansheng. Microstructure and Properties of As-cast Mg-8Zn-4Al-0.5Cu-0.5Mn-xLi Alloys with High Modulus[J]. 材料研究学报, 2024, 38(3): 187-196.
[8] YIN Yanchao, LV Yifan, LIU Qianli, XU Yali, JIANG Peng, YU Wei. Tensile Behavior and Plastic Deformation Mechanism of Ti-Al-Fe Alloy at Room Temperature and Liquid Nitrogen Temperature[J]. 材料研究学报, 2024, 38(3): 232-240.
[9] ZHOU Lichen. Preparation of Fluorine Modified Titanium Dioxide Catalyst and Its Photocatalytic Degradation for Oilfield Wastewater[J]. 材料研究学报, 2024, 38(2): 141-150.
[10] ZHENG Mingrui, LI Yawei, LIU Jing, WANG Li, ZHENG Wei, DONG Jiasheng, ZHANG Jian, LOU Langhong. Effect of Notch Orientation and Temperature on Thermal Fatigue Behavior of a Third-Generation Single Crystal Superalloy DD33[J]. 材料研究学报, 2024, 38(2): 111-120.
[11] HAO Wenjun, JING Hemin, XI Tong, YANG Chunguang, YANG Ke. Effect of Austenitizing Temperature on Microstructure and Properties of High Carbon Cu-bearing Martensitic Stainless Steel[J]. 材料研究学报, 2024, 38(2): 121-129.
[12] ZENG Daoping, AN Tongbang, ZHENG Shaoxian, DAI Haiyang, CAO Zhilong, MA Chengyong. Fracture Toughness of Weld Metal of 440 MPa Grade High-strength Steel[J]. 材料研究学报, 2024, 38(2): 151-160.
[13] LIU Zhenhuan, LI Yonghan, LIU Yang, WANG Pei, LI Dianzhong. Carbide Evolution Behavior of GCr15 Bearing Steel During Aging Process[J]. 材料研究学报, 2024, 38(2): 130-140.
[14] YU Sheng, GUO Wei, LV Shulin, WU Shusen. Synthesis and Mechanical Properties of Ti-Zr-Cu-Pd-Mo Amorphous Alloy Based Composites with In-situ Autogenous β-Ti Phase[J]. 材料研究学报, 2024, 38(2): 105-110.
[15] YANG Renxian, MA Shucheng, CAI Xin, ZHENG Leigang, HU Xiaoqiang, LI Dianzhong. Influence of Cerium on Creep Properties of 316LN Austenitic Stainless Steel[J]. 材料研究学报, 2024, 38(1): 23-32.
No Suggested Reading articles found!