|
|
|
| Fracture Toughness of Weld Metal of 440 MPa Grade High-strength Steel |
ZENG Daoping1,2, AN Tongbang1( ), ZHENG Shaoxian2, DAI Haiyang1, CAO Zhilong1, MA Chengyong1 |
1.Welding Research Institute of Iron and Steel Research Institute, Beijing 100081, China 2.School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China |
|
Cite this article:
ZENG Daoping, AN Tongbang, ZHENG Shaoxian, DAI Haiyang, CAO Zhilong, MA Chengyong. Fracture Toughness of Weld Metal of 440 MPa Grade High-strength Steel. Chinese Journal of Materials Research, 2024, 38(2): 151-160.
|
|
|
Abstract Weld joints of 440 MPa grade high-strength steel were prepared via metal active-gas welding technique with a homemade Si-Mn-Ni gas-shielded solid welding wire as filler. Then the fracture toughness of the weld metals was studied by impact test, fatigue crack growth rate test, and crack tip opening displacement test at different temperatures, aiming to clarify the relation of microstructure and fracture toughness, so that to provide data support for the engineering application of the welding wire. The results show that the ductile-brittle transition temperature of the weld metal is about -48.4oC; With the increase of constant amplitude load (13~17 kN), the number of load cycles(N) and the fatigue life decreases continuously. Moreover, when the stress intensity factor range (ΔK) keeps the same, the fatigue crack growth rate (da/dN) decreases gradually with the increase of constant amplitude load; The CTOD value (δ) of weld metal is 0.481~0.781 mm, the effective characteristic value (δ0.2BL) is 0.5103 mm, and the dispersion coefficient of CTOD value(δ) is only 16.5%, The weld metal has good fracture toughness and meets the technical requirements of marine engineering; Acicular ferrite has the strong ability to block crack propagation, thus improving fracture toughness, while quasi-polygonal ferrite has the weak ability to block crack propagation and M-A constituent is easy to induce microcracks, thus reducing fracture toughness.
|
|
Received: 16 March 2023
|
|
|
Corresponding Authors:
AN Tongbang, Tel: 18201639982, E-mail: anran30002000@sina.com
|
| 1 |
Beidokhti B, Koukabi A H, Dolati A. Effect of titanium addition on the microstructure and inclusion formation in submerged arc welded HSLA pipeline steel [J]. J. Mater. Process. Technol., 2008, 209(8): 4027
doi: 10.1016/j.jmatprotec.2008.09.021
|
| 2 |
Chen J, Li H Y, Zhou W H, et al. Effect of heat input on low temperature toughness and corrosion resistance of Q1100 steel welded joints [J]. Chin. J. Mater. Trans., 2022, 36(8): 617
|
|
陈 杰, 李红英, 周文浩 等. 热输入对Q1100钢焊接接头低温韧性及耐蚀性能的影响 [J]. 材料研究学报, 2022, 36(8): 617
|
| 3 |
An T B, Shan J G, Wei J S, et al. Effect of heat input on microstructure and performance of welded joint in 1000 MPa grade steel for construction machinery [J]. J. Mech. Eng., 2014, 50(22): 42
|
|
安同邦, 单际国, 魏金山 等. 热输入对1000 MPa级工程机械用钢接头组织性能的影响 [J]. 机械工程学报, 2014, 50(22): 42
doi: 10.3901/JME.2014.22.042
|
| 4 |
Liu C, Deng C Y, Wang S, et al. Critical fracture toughness of weld metal structure in submerged arc welding of EH36 steel [J]. Trans. China. Weld. Inst., 2019, 40(3): 107
|
|
刘 畅, 邓彩艳, 王 胜 等. EH36钢埋弧焊焊缝金属组织临界断裂韧性 [J]. 焊接学报, 2019, 40(3): 107
|
| 5 |
Barbosa L H S, Modenesi P J, Godefroid L B, et al. Fatigue crack growth rates on the weld metal of high input submerged arc welding [J]. Int. J. Fatigue., 2019, 119: 43.
doi: 10.1016/j.ijfatigue.2018.09.020
|
| 6 |
Yang Y H, Shi L, Xu Z, et al. Fracture toughness of the materials in welded joint of X80 pipeline steel [J]. Eng. Fract. Mech, 2015, 148: 337
doi: 10.1016/j.engfracmech.2015.07.061
|
| 7 |
Zhuo X, An T B, Ma C Y. Strengthening and toughening mechanisms of deposited metals for 420 MPa weathering bridge steel [J]. China Iron&Steel, 2022, 55(4): 88
|
|
卓 晓, 安同邦, 马成勇. 420 MPa级耐候桥梁钢用焊材熔敷金属强韧化规律 [J]. 钢铁, 2022, 55(4): 88
|
| 8 |
Zuo Y. Study on the toughening mechanism of 400 MPa grade low alloy high strength steel welding materials [D]. Beijing: Beijing Institute of Petrochemical Technology, 2022
|
|
左 月. 400 MPa级低合金高强钢焊接材料强韧化机理研究 [D]. 北京: 北京石油化工学院, 2022
|
| 9 |
. Metallic materials-fatigue testing-fatigue crack growth method [S]. Standardization Administration of the P.R.C, Beijing, 2017
|
|
. 金属材料疲劳裂纹扩展速率试验方法 [S]. 中国人民共和国标准化管理委员会, 北京, 2017
|
| 10 |
. Metallic materials-Unified method of test for determination of quasistatic fracture toughness [S]. Standardization Administration of the P.R.C, Beijing, 2014
|
|
. 金属材料准静态断裂韧度的统一试验方法 [S]. 中国人民共和国标准化管理委员会, 北京, 2014
|
| 11 |
Hong L, Zuo X R, Ji Y L, et al. Fracture behavior of thick X80 pipeline steel plates at -25oC [J]. Chin. J. Mater. Trans., 2018, 32(1): 33
|
|
洪 良, 左秀荣, 姬颖伦 等. 厚规格X80管线钢低温断裂行为研究 [J]. 材料研究学报, 2018, 32(1): 33
|
| 12 |
Lee S G, Kim B, Sohn S S, et al. Effects of local-brittle-zone(LBZ) microstructures on crack initiation and propagation in three Mo-added high-strength low-alloy [J]. Mater. Sci. Eng. A., 2019, 760: 125
doi: 10.1016/j.msea.2019.05.120
|
| 13 |
An T B, Wei J S, Shan J G, et al. Influence of shielding gas composition on microstructure characteristics of 1000 MPa grade deposited metals [J]. Acta. Metall. Sin., 2019, 55(5): 575
doi: 10.11900/0412.1961.2018.00375
|
|
安同邦, 魏金山, 单际国 等. 保护气成分对1000 MPa级高强熔敷金属组织特征的影响 [J]. 金属学报, 2019, 55(5): 575
doi: 10.11900/0412.1961.2018.00375
|
| 14 |
Lan L Y, Kong X, Qiu C, et al. Influence of microstructural aspects on impact toughness of multi-pass submerged arc welded HSLA steel joints [J]. Mater. Des., 2016, 90: 488
doi: 10.1016/j.matdes.2015.10.158
|
| 15 |
Yong Q L. Second Phase in Structural Steels [M]. Beijing: Metallurgical Industry Press, 2006: 145
|
|
雍岐龙. 钢铁材料中的第二相 [M]. 北京: 冶金工业出版社, 2006: 145
|
| 16 |
Yan C, Chen J H, Luo Y C. Microstructure and toughness of weak links in multi-layer welds of low alloy high-strength steel [J]. Trans. China. Weld. Inst., 1992, 13(1): 21
|
|
阎 澄, 陈剑虹, 罗永春. 低合金高强钢多层焊缝薄弱环节的组织及韧性 [J]. 焊接学报, 1992, 13(1): 21
|
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|