Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (2): 151-160    DOI: 10.11901/1005.3093.2023.164
ARTICLES Current Issue | Archive | Adv Search |
Fracture Toughness of Weld Metal of 440 MPa Grade High-strength Steel
ZENG Daoping1,2, AN Tongbang1(), ZHENG Shaoxian2, DAI Haiyang1, CAO Zhilong1, MA Chengyong1
1.Welding Research Institute of Iron and Steel Research Institute, Beijing 100081, China
2.School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
Cite this article: 

ZENG Daoping, AN Tongbang, ZHENG Shaoxian, DAI Haiyang, CAO Zhilong, MA Chengyong. Fracture Toughness of Weld Metal of 440 MPa Grade High-strength Steel. Chinese Journal of Materials Research, 2024, 38(2): 151-160.

Download:  HTML  PDF(18578KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Weld joints of 440 MPa grade high-strength steel were prepared via metal active-gas welding technique with a homemade Si-Mn-Ni gas-shielded solid welding wire as filler. Then the fracture toughness of the weld metals was studied by impact test, fatigue crack growth rate test, and crack tip opening displacement test at different temperatures, aiming to clarify the relation of microstructure and fracture toughness, so that to provide data support for the engineering application of the welding wire. The results show that the ductile-brittle transition temperature of the weld metal is about -48.4oC; With the increase of constant amplitude load (13~17 kN), the number of load cycles(N) and the fatigue life decreases continuously. Moreover, when the stress intensity factor range (ΔK) keeps the same, the fatigue crack growth rate (da/dN) decreases gradually with the increase of constant amplitude load; The CTOD value (δ) of weld metal is 0.481~0.781 mm, the effective characteristic value (δ0.2BL) is 0.5103 mm, and the dispersion coefficient of CTOD value(δ) is only 16.5%, The weld metal has good fracture toughness and meets the technical requirements of marine engineering; Acicular ferrite has the strong ability to block crack propagation, thus improving fracture toughness, while quasi-polygonal ferrite has the weak ability to block crack propagation and M-A constituent is easy to induce microcracks, thus reducing fracture toughness.

Key words:  metallic materials      440 MPa grade high-strength steel      weld metal      fracture toughness      microstructure     
Received:  16 March 2023     
ZTFLH:  TG442  
Corresponding Authors:  AN Tongbang, Tel: 18201639982, E-mail: anran30002000@sina.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.164     OR     https://www.cjmr.org/EN/Y2024/V38/I2/151

MaterialCSiMnNiCr+CuTiPSOther
Test panel< 0.06< 0.301.100.200.450< 0.03≤ 0.005≤ 0.005Trace
Solder wire0.0390.491.461.020.3910.019≤ 0.005≤ 0.005Trace
Table 1  Chemical composition of test plate and solder wire (mass fraction,%)
Material

Yield strength

Rp0.2 / MPa

Tensile strength

Rm / MPa

Elongation after

fracture A / %

Reduction of

Area Z / %

Poisson's

ratio μ

Elastic modulus

E / GPa

Test panel55261924.576--
Weld metal53859324.0780.3212
Table 2  Mechanical properties of test plate and weld metal
Fig.1  Schematic diagram of test palte specification
Fig.2  Location diagram of organization observation and performance test (a) organization observation, (b) performance tests
Fig.3  Dimension diagram of CT sample and CTOD sample (a) CT sample, (b) CTOD sample
Fig.4  Photos of weld metal microstructure (a) columnar crystal (OM), (b) columnar crystal (TEM), (c) interpass (OM), (d) interpass (TEM)
Fig.5  Photos of M-A constituent and microhardness in weld metal (a) columnar crystal, (b) interpass, (c) microhardness
Temperature20oC0oC-20oC-40oC-60oC-80oC
Absorbed energy / J

180; 191; 194

188.3

182; 195; 167

181.3

145; 168; 159

157.3

145; 148; 170

154.3

26; 19; 18

21.7

10; 9.6; 14

11.2

Table 3  Impact absorption energy of series temperature
Fig.6  Boltzmann function fitting curve
Fig.7  Impact fracture morphology (a) -40oC, (b) -60oC
Fig.8  a-N curve and da/dNK curve for different constant amplitude loads (a) a-N curve, (b) da/dNK curve
Pmax / kNa0 / mmaf / mmN / cycleCmR2da/dNK
1312.806429.70394264562.6841 × 10-93.16780.98302.6814 × 10-9K)3.1678
1513.659029.44381475852.1048 × 10-93.21180.98982.1048 × 10-9K)3.2118
1713.262628.04281125772.8874 × 10-93.08690.99841.8856 × 10-9K)3..0869
Table 4  Results of fatigue crack growth rate tests
Fig.9  Fracture morphology for different constant amplitude loads (a) ealy stage of 13 kN, (b) intermediate stage of 13 kN, (c) later stage of 13 kN, (d) ealy stage of 17 kN, (e) intermediate stage of 17 kN, (f) later stage of 17 kN
Samplea01a02a03a04a05a06a07a08a09
114.2115.9816.7116.7516.3815.8616.0816.3116.07
214.9216.1416.8817.1417.0916.8616.1816.1115.83
316.4916.6716.4616.7117.2717.4717.2616.2614.42
415.5216.7117.4117.6517.5317.0716.4816.3016.03
516.4716.7216.2516.2216.4516.9317.0316.6015.55
617.2017.3616.8516.6917.0416.8617.4616.9015.58
Table 5  Original crack length
Samplea1a2a3a4a5a6a7a8a9
115.0716.6317.6217.9017.9017.0516.9016.5816.21
215.0916.4317.4117.6017.6217.3016.6316.2315.98
316.5416.8616.8917.3917.8417.9817.6816.5514.95
416.3017.0518.1018.2818.2417.7017.1816.5016.12
516.5917.0117.0217.5017.9417.8217.5917.0316.06
617.3017.6717.4517.9018.3418.0517.8617.2516.06
Table 6  Termination crack length
SampleW / mmB / mmS / mmZ / mma0 / mmΔa / mmF / kNVp / mmδ / mm
132.0715.85128016.1510.87629.2223.3950.781
232.0815.90128016.4470.39127.7811.9950.481
332.0815.92128016.6940.42227.032.2010.516
432.1315.93128016.8660.54226.6492.4880.567
532.1615.95128016.5260.75327.7122.9870.661
632.1315.91128017.0190.63126.0882.6720.595
Table 7  Results of CTOD tests
Fig.10  Resistance curve of δa
Fig.11  Fracture morphology of CTOD sample (a) micromorphology, (b) prefabricated fatigue crack zone, (c) fatigue crack growth zone, (d) secondary fatigue crack zone, (e) impact fracture zone
Fig.12  Crack propagation morphology on the longitudinal section of the imapact fracture at -40oC (a) schematic diagram of observation position, (b) effect of AF on main crack growth, (c) high magnification image of the area in Fig.b, (d) secondary crack propagation in AF, (e) effect of QF on crack growth; (f) high magnification image of the area in Fig.e, (g) M-A constituent induced microcrack
1 Beidokhti B, Koukabi A H, Dolati A. Effect of titanium addition on the microstructure and inclusion formation in submerged arc welded HSLA pipeline steel [J]. J. Mater. Process. Technol., 2008, 209(8): 4027
doi: 10.1016/j.jmatprotec.2008.09.021
2 Chen J, Li H Y, Zhou W H, et al. Effect of heat input on low temperature toughness and corrosion resistance of Q1100 steel welded joints [J]. Chin. J. Mater. Trans., 2022, 36(8): 617
陈 杰, 李红英, 周文浩 等. 热输入对Q1100钢焊接接头低温韧性及耐蚀性能的影响 [J]. 材料研究学报, 2022, 36(8): 617
3 An T B, Shan J G, Wei J S, et al. Effect of heat input on microstructure and performance of welded joint in 1000 MPa grade steel for construction machinery [J]. J. Mech. Eng., 2014, 50(22): 42
安同邦, 单际国, 魏金山 等. 热输入对1000 MPa级工程机械用钢接头组织性能的影响 [J]. 机械工程学报, 2014, 50(22): 42
doi: 10.3901/JME.2014.22.042
4 Liu C, Deng C Y, Wang S, et al. Critical fracture toughness of weld metal structure in submerged arc welding of EH36 steel [J]. Trans. China. Weld. Inst., 2019, 40(3): 107
刘 畅, 邓彩艳, 王 胜 等. EH36钢埋弧焊焊缝金属组织临界断裂韧性 [J]. 焊接学报, 2019, 40(3): 107
5 Barbosa L H S, Modenesi P J, Godefroid L B, et al. Fatigue crack growth rates on the weld metal of high input submerged arc welding [J]. Int. J. Fatigue., 2019, 119: 43.
doi: 10.1016/j.ijfatigue.2018.09.020
6 Yang Y H, Shi L, Xu Z, et al. Fracture toughness of the materials in welded joint of X80 pipeline steel [J]. Eng. Fract. Mech, 2015, 148: 337
doi: 10.1016/j.engfracmech.2015.07.061
7 Zhuo X, An T B, Ma C Y. Strengthening and toughening mechanisms of deposited metals for 420 MPa weathering bridge steel [J]. China Iron&Steel, 2022, 55(4): 88
卓 晓, 安同邦, 马成勇. 420 MPa级耐候桥梁钢用焊材熔敷金属强韧化规律 [J]. 钢铁, 2022, 55(4): 88
8 Zuo Y. Study on the toughening mechanism of 400 MPa grade low alloy high strength steel welding materials [D]. Beijing: Beijing Institute of Petrochemical Technology, 2022
左 月. 400 MPa级低合金高强钢焊接材料强韧化机理研究 [D]. 北京: 北京石油化工学院, 2022
9 . Metallic materials-fatigue testing-fatigue crack growth method [S]. Standardization Administration of the P.R.C, Beijing, 2017
. 金属材料疲劳裂纹扩展速率试验方法 [S]. 中国人民共和国标准化管理委员会, 北京, 2017
10 . Metallic materials-Unified method of test for determination of quasistatic fracture toughness [S]. Standardization Administration of the P.R.C, Beijing, 2014
. 金属材料准静态断裂韧度的统一试验方法 [S]. 中国人民共和国标准化管理委员会, 北京, 2014
11 Hong L, Zuo X R, Ji Y L, et al. Fracture behavior of thick X80 pipeline steel plates at -25oC [J]. Chin. J. Mater. Trans., 2018, 32(1): 33
洪 良, 左秀荣, 姬颖伦 等. 厚规格X80管线钢低温断裂行为研究 [J]. 材料研究学报, 2018, 32(1): 33
12 Lee S G, Kim B, Sohn S S, et al. Effects of local-brittle-zone(LBZ) microstructures on crack initiation and propagation in three Mo-added high-strength low-alloy [J]. Mater. Sci. Eng. A., 2019, 760: 125
doi: 10.1016/j.msea.2019.05.120
13 An T B, Wei J S, Shan J G, et al. Influence of shielding gas composition on microstructure characteristics of 1000 MPa grade deposited metals [J]. Acta. Metall. Sin., 2019, 55(5): 575
doi: 10.11900/0412.1961.2018.00375
安同邦, 魏金山, 单际国 等. 保护气成分对1000 MPa级高强熔敷金属组织特征的影响 [J]. 金属学报, 2019, 55(5): 575
doi: 10.11900/0412.1961.2018.00375
14 Lan L Y, Kong X, Qiu C, et al. Influence of microstructural aspects on impact toughness of multi-pass submerged arc welded HSLA steel joints [J]. Mater. Des., 2016, 90: 488
doi: 10.1016/j.matdes.2015.10.158
15 Yong Q L. Second Phase in Structural Steels [M]. Beijing: Metallurgical Industry Press, 2006: 145
雍岐龙. 钢铁材料中的第二相 [M]. 北京: 冶金工业出版社, 2006: 145
16 Yan C, Chen J H, Luo Y C. Microstructure and toughness of weak links in multi-layer welds of low alloy high-strength steel [J]. Trans. China. Weld. Inst., 1992, 13(1): 21
阎 澄, 陈剑虹, 罗永春. 低合金高强钢多层焊缝薄弱环节的组织及韧性 [J]. 焊接学报1992, 13(1): 21
[1] ZHOU Lichen. Preparation of Fluorine Modified Titanium Dioxide Catalyst and Its Photocatalytic Degradation for Oilfield Wastewater[J]. 材料研究学报, 2024, 38(2): 141-150.
[2] ZHENG Mingrui, LI Yawei, LIU Jing, WANG Li, ZHENG Wei, DONG Jiasheng, ZHANG Jian, LOU Langhong. Effect of Notch Orientation and Temperature on Thermal Fatigue Behavior of a Third-Generation Single Crystal Superalloy DD33[J]. 材料研究学报, 2024, 38(2): 111-120.
[3] HAO Wenjun, JING Hemin, XI Tong, YANG Chunguang, YANG Ke. Effect of Austenitizing Temperature on Microstructure and Properties of High Carbon Cu-bearing Martensitic Stainless Steel[J]. 材料研究学报, 2024, 38(2): 121-129.
[4] LIU Zhenhuan, LI Yonghan, LIU Yang, WANG Pei, LI Dianzhong. Carbide Evolution Behavior of GCr15 Bearing Steel During Aging Process[J]. 材料研究学报, 2024, 38(2): 130-140.
[5] YU Sheng, GUO Wei, LV Shulin, WU Shusen. Synthesis and Mechanical Properties of Ti-Zr-Cu-Pd-Mo Amorphous Alloy Based Composites with In-situ Autogenous β-Ti Phase[J]. 材料研究学报, 2024, 38(2): 105-110.
[6] YANG Renxian, MA Shucheng, CAI Xin, ZHENG Leigang, HU Xiaoqiang, LI Dianzhong. Influence of Cerium on Creep Properties of 316LN Austenitic Stainless Steel[J]. 材料研究学报, 2024, 38(1): 23-32.
[7] LV Tao, LIU Fang, LIU Chang, DONG Dexiu, ZHANG Weihong, CAI Guixi. Influence of Microstructure on Ultrasonic Attenuation of Forged GH907 Alloy Ring for Aero Engine Turbine Casing[J]. 材料研究学报, 2024, 38(1): 14-22.
[8] QIN Yanli, ZHAO Guangpu, ZHANG Hao, NI Dingrui, XIAO Bolv, MA Zongyi. Microstructure and Properties of Al-30Si Alloy Produced by Selective Laser Melting[J]. 材料研究学报, 2024, 38(1): 43-50.
[9] LI Bosen, LIAO Zhongxin, GAO Daqiang. Effect of BNZ Component on Structure and Property of KNN Based Lead-free Piezoelectric Ceramics[J]. 材料研究学报, 2024, 38(1): 51-60.
[10] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[11] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[12] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[13] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[14] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[15] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
No Suggested Reading articles found!