Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (12): 952-960    DOI: 10.11901/1005.3093.2023.103
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Performance of Self-assembled Carbon/Epoxy Composite Microwave Absorbing Coating
XU Wenyu, SUN Jiawen, ZHU Yaofeng()
School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
Cite this article: 

XU Wenyu, SUN Jiawen, ZHU Yaofeng. Preparation and Performance of Self-assembled Carbon/Epoxy Composite Microwave Absorbing Coating. Chinese Journal of Materials Research, 2023, 37(12): 952-960.

Download:  HTML  PDF(8166KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Electromagnetic absorbing material is one of the key materials for the realization of equipment stealth protection. Moreover, electromagnetic absorbing materials with high electromagnetic absorption and corrosion resistance will play a key role in special marine environments. Herein, the CS@rGO/EP composite functional coating with excellent microwave absorbing performance and anti-corrosion properties is successfully fabricated through physical mixing method with CS@rGO as wave absorbing filler, and the epoxy resin (EP) as matrix. The structure and properties of the CS@rGO/EP composite functional coating were characterized. The results display that the CS@rGO/EP composite functional coating possess excellent microwave absorbing properties. When the CS@rGO absorber content is 20% and the coating thickness is 1.1mm, the minimum reflection loss value of the coating can reach -25.03 dB. Meanwhile, the coating can maintain well adhesion to the steel substrate after the coating/Q235 carbon steel plate has been immersed in 5%NaCl or NaOH solutions for 30 days, and electrochemical tests manifest that the corrosion rate of the coating/Q235 steel is as low as (6.53×10-6 mm·a-1), i.e. a high protection efficiency (92.86%). All in all, the good comprehensive performance of CS@rGO/EP composite functional coating shows its great application potential in special service environments.

Key words:  composites      absorbing materials      electrostatic self-assembly-high temperature carbonization      self-assembled carbon/epoxy composite coatings      anti-corrosion properties     
Received:  29 January 2023     
ZTFLH:  TB332  
Corresponding Authors:  ZHU Yaofeng, Tel: (0571)86843607, E-mail: yfzhu@zstu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.103     OR     https://www.cjmr.org/EN/Y2023/V37/I12/952

Fig.1  Preparation procedures of self-assembled carbon/epoxy resin (CS@rGO/EP) functional coating
GradeShedding situation
1The shedding area of the coating surface accounts for more than 30% of the entire coating surface
2The shedding area of the coating surface accounts for less than 30% of the entire coating surface
3The shedding area of the coating surface accounts for less than 10% of the entire coating surface
4The shedding area of the coating surface accounts for less than 5% of the entire coating surface
5No shedding phenomenon on the coating surface
Table 1  Standard for valuating grade of surface shedding
Fig.2  FESEM images of CS (a) andCS@rGO (b); TEM images of CS (a1) andCS@rGO (b); FESEM images of surfaces (c-g) and cross sections (c1-g1) of samples with different mass fractions of CS@rGO; XRD pattern (h) and FT-IR spectra(i-j) of samples
Fig.3  The absorption properties of CS@rGO/EP (a) reflection loss, (b)the real part of the dielectric constant, (c) the imaginary part of the dielectric constant, (d) dielectric loss, (e) impedance matching, (f) attenuation constant (g) Schematic diagram of microwave absorption mechanism; (h) Comparison of electromagnetic wave absorption performance of functional coatings
Fig.4  Coating adhesion test effect of samples(a), solvent resistant test effect of samples after soak in 5%NaCl medium for 30 days (b) and Soak in 5%NaOH medium for 30 days (c)
Sample5%NaCl5%NaOH5%HCl
SF-521Entirely shedding
SF-1021Entirely shedding
SF-1531Entirely shedding
SF-2042Entirely shedding
SF-2542Entirely shedding
Table 2  Performance for solvent resistant of different coatings
Fig.5  Coating corrosion resistance (a) Nyquist plot, (b) impedance-frequency Bode plot, (c) phase-frequency Bode plot of SF-0; (d) Nyquist plot, (e) impedance-frequency Bode plot, (f) phase-frequency Bode plot of SF-20; Equivalent circuit diagrams of (g) SF-0 and (h)SF-20; (i) The Tafel curve of samples immersed in 3.5%NaCl solution for 21 days
SampleEcorr / VIcorr / A·cm-2V / mm·a-1EPE / %
Steel plate-0.7957.87×10-99.17×10-5-
Pure epoxy resin coating-0.6983.16×10-93.67×10-559.85
CS@rGO/EP coating-0.3585.62×10-106.53×10-692.86
Table 3  Tafel polarization curve fitting value of samples immersed in solution for 21 d
1 Jiang X Y, Wan W H, Wang B, et al. Enhanced anti-corrosion and microwave absorption performance with carbonyl iron modified by organic fluorinated chemicals [J]. Appl. Surf. Sci., 2022, 572
2 Wang Y, Di X C, Chen J, et al. Multi-dimensional C@NiCo-LDHs@Ni aerogel: Structural and componential engineering towards efficient microwave absorption, anti-corrosion and thermal-insulation [J]. Carbon, 2022, 191: 625
doi: 10.1016/j.carbon.2022.02.016
3 Xu Y, Huang X X, Zhong B, et al. Balancing interface polarization strategy for enhancing electromagnetic wave absorption of carbon materials [J]. Chem. Eng. J., 2020, 391: 123538
doi: 10.1016/j.cej.2019.123538
4 Wei T, Zhang X Z, Yang G, et al. Hybrid silica-carbon bilayers anchoring on FeSiAl surface with bifunctions of enhanced anti-corrosion and microwave absorption [J]. Carbon, 2021, 173: 185
doi: 10.1016/j.carbon.2020.11.002
5 Zhang X Z, Guo Y, Ali Rashad, et al. Bifunctional carbon-encapsulated FeSiAl hybrid flakes for enhanced microwave absorption properties and analysis of corrosion resistance [J]. J. Alloys Compd., 2020, 828: 154079
doi: 10.1016/j.jallcom.2020.154079
6 Gai L X, Zhao H H, Wang F Y, et al. Advances in core—shell engineering of carbon-based composites for electromagnetic wave absorption [J]. Nano Res., 2022, 15: 9410
doi: 10.1007/s12274-022-4695-6
7 Li Q, Zhang Z Z, Qi L P, et al. Toward the Application of High Frequency Electromagnetic Wave Absorption by Carbon Nanostructures [J]. Adv. Sci., 2019, 6(8): 1801057
doi: 10.1002/advs.v6.8
8 Yang W D, Liu Y J. The latest research progress of graphene-based composite absorbing materials [J]. Silk, 2021, 58(07): 51
杨文栋, 刘元军. 石墨烯基复合吸波材料的最新研究进展 [J]. 丝绸, 2021, 58(07): 51
9 Lai Y Y, Lv LZ, Fu H Q. Preparation and study of Al2O3@PPy@rGOcomposites with microwave absorption properties [J]. J. Alloys Compd., 2020, 832: 152957
doi: 10.1016/j.jallcom.2019.152957
10 Cui G, Bi Z X, Zhang R Y, et al. A comprehensive review on graphene-based anti-corrosive coatings [J]. Chem. Eng. J., 2019, 373: 104
doi: 10.1016/j.cej.2019.05.034
11 Tian Y Q, Wang W H, Zhong L, et al. Investigation of the anticorrosion properties of graphene oxide-modified waterborne epoxy coatings for AA6061 [J]. Prog. Org. Coat., 2022, 163: 106655
12 Li Z W, Li J, Cui J C, et al. Dispersion and parallel assembly of sulfonated graphene in waterborne epoxy anticorrosion coatings [J]. J. Mater. Chem. A, 2019, 7(30): 17937
doi: 10.1039/C9TA03995C
13 Xu X F, Shi S H, Tang Y L, et al. Growth of NiAl‐layered double hydroxide on graphene toward excellent anticorrosive microwave absorption application [J]. Adv. Sci., 2021, 8(5): 2002658
doi: 10.1002/advs.v8.5
14 Yang W T. Preparation and application of conductive polyaniline modified carbon composite absorbers [D]. Hangzhou: Zhejiang Sci-Tech University, 2020
杨汶童. 导电聚苯胺修饰碳复合吸波材料的制备及应用探索 [D]. 杭州: 浙江理工大学, 2020
15 Shi P P. Preparation and research of reduced graphene oxide/ferric oxide/polyaniline microwave absorbing anticorrosion nanocomposite [D]. Yangzhou: Yangzhou University, 2018
史萍萍. 还原氧化石墨烯/四氧化三铁/聚苯胺吸波防腐纳米复合材料的制备及研究 [D]. 扬州: 扬州大学, 2018
16 Souto L F C, Soares B G. Polyaniline/carbon nanotube hybrids modified with ionic liquids as anticorrosive additive in epoxy coatings [J]. Prog. Org. Coat., 2020, 143: 105598
17 Zhu Q S, Li E, Liu X H, et al. Epoxy coating with in-situ synthesis of polypyrrole functionalized graphene oxide for enhanced anticorrosive performance [J]. Prog. Org. Coat., 2020, 140: 105488
18 Yan L L, Li L L, Ru X X, et al. Core-shell, wire-in-tube and nanotube structures: Carbon-based materials by molecular layer deposition for efficient microwave absorption [J]. Carbon, 2021, 173: 145
doi: 10.1016/j.carbon.2020.10.095
19 Liu X F, Nie X Y, Yu R H, et al. Design of dual-frequency electromagnetic wave absorption by interface modulation strategy [J]. Chem. Eng. J., 2018, 334: 153
doi: 10.1016/j.cej.2017.10.012
20 Wu H J, Zhao Z H, Wu G L. Facile synthesis of FeCo layered double oxide/raspberry-like carbon microspheres with hierarchical structure for electromagnetic wave absorption [J]. J. Colloid Interface Sci., 2020, 566: 21
doi: 10.1016/j.jcis.2020.01.064
21 Xu H L, Yin X W, Zhu M, et al. Carbon hollow microspheres with a designable mesoporous shell for high-performance electromagnetic wave absorption [J]. ACS Appl. Mater. Interfaces, 2017, 9(7): 6332
doi: 10.1021/acsami.6b15826
22 Tong Z Y, Liao Z J, Liu Y Y, et al. Hierarchical Fe3O4/Fe@C@MoS2 core-shell nanofibers for efficient microwave absorption [J]. Carbon, 2021, 179: 646
doi: 10.1016/j.carbon.2021.04.051
23 Cai K W, Zuo S X, Luo S P, et al. Preparation of polyaniline/graphene composites with excellent anti-corrosion properties and their application in waterborne polyurethane anticorrosive coatings [J]. RSC Adv., 2016, 6(98): 95965
doi: 10.1039/C6RA19618G
24 Liu Y, Su X L, Luo F, et al. Enhanced electromagnetic and microwave absorption properties of carbonyl iron/Ti3SiC2/epoxy resin coating [J]. J. Mater. Sci. Mater. Electron., 2018, 29(3): 2500
doi: 10.1007/s10854-017-8172-z
25 Deng H W, Yang Q Z, Zhang Z Q, et al. Temperature dependence of the microwave absorption performance of carbonyl iron powder/boron-modified phenolic resin composite coating [J]. Appl. Phys. A, 2022, 128(3): 251
doi: 10.1007/s00339-022-05373-8
26 Deng H W, Yang Q Z, Zhang Z Q, et al. Y2Mo3O12 modified carbonyl iron powder-boron-phenolic resin coatings for microwave absorption [J]. Appl. Phys. A, 2022, 128(10): 888
doi: 10.1007/s00339-022-05990-3
27 Wu H J, Liu J L, Liang H S, et al. Sandwich-like Fe3O4/Fe3S4 composites for electromagnetic wave absorption [J]. Chem. Eng. J., 2020, 393: 124743
doi: 10.1016/j.cej.2020.124743
28 Zhang X, An J W, Ji C, et al. Electromagnetic and microwave absorption properties of Ti3SiC2/NiFe2O4/epoxy resin coatings [J]. J. Mater. Sci. Mater. Electron., 2021, 32(20): 25363
doi: 10.1007/s10854-021-06996-y
29 Zhou L, Yu J J, Chen M, et al. Influence of particle size on the microwave absorption properties of FeSiAl/ZnO-filled resin composite coatings [J]. J. Mater. Sci. Mater. Electron., 2020, 31(3): 2446
doi: 10.1007/s10854-019-02781-0
30 Przybył W, Januszko A, Radek N, et al. Microwave absorption properties of carbonyl iron-based paint coatings for military applications [J]. Def. Technol., 2022, 22: 1
31 Ma G J, Zeng Y S, Yang X, et al. Wave-transmitting material to optimize impedance matching and enhance microwave absorption properties of flaky carbonyl iron coating [J]. J. Mater. Sci. Mater. Electron., 2020, 31(11): 8627
doi: 10.1007/s10854-020-03398-4
32 Zhou L, Yu J J, Wang H B, et al. Dielectric and microwave absorption properties of resin-matrix composite coating filled with multi-wall carbon nanotubes and Ti3SiC2 particles [J]. J. Mater. Sci. Mater. Electron., 2020, 31(18): 15852
doi: 10.1007/s10854-020-04147-3
33 Hosseini H, Mahdavi H. Nanocomposite based on epoxy and MWCNTs modified with NiFe2O4 nanoparticles as efficient microwave absorbing material [J]. Appl. Organomet. Chem., 2018, 32(4): 4294
34 Shu R W, Wan Z L, Zhang J B, et al. Synergistically assembled nitrogen-doped reduced graphene oxide/multi-walled carbon nanotubes composite aerogels with superior electromagnetic wave absorption performance [J]. Compos Sci Technol, 2021, 210: 108818
doi: 10.1016/j.compscitech.2021.108818
35 Zhang X C, Zhang X, Yuan H R, et al. CoNi nanoparticles encapsulated by nitrogen-doped carbon nanotube arrays on reduced graphene oxide sheets for electromagnetic wave absorption [J]. Chem. Eng. J., 2020, 383: 123208
doi: 10.1016/j.cej.2019.123208
36 Abdalla I, Elhassan A, Yu J Y, et al. A hybrid comprised of porous carbon nanofibers and rGO for efficient electromagnetic wave absorption [J]. Carbon, 2020, 157: 703
doi: 10.1016/j.carbon.2019.11.004
37 Gao Z G, Ma Z H, Lan D, et al. Synergistic polarization loss of MoS2‐based multiphase solid solution for electromagnetic wave absorption [J]. Adv. Funct. Mater., 2022, 37(18): 2112294
38 Li Z W, Li J, Cui J C, et al. Dispersion and parallel assembly of sulfonated graphene in waterborne epoxy anticorrosion coatings [J]. J. Mater. Chem. A, 2019, 7(30): 17937
doi: 10.1039/C9TA03995C
39 Talebi H, Olad A, Nosrati R. Fe3O4/PANI nanocomposite core-shell structure in epoxy resin matrix for the application as electromagnetic waves absorber [J]. Prog. Org. Coat., 2022, 163: 106665
40 Li Z W, Li J, Cui J C, et al. Dispersion and parallel assembly of sulfonated graphene in waterborne epoxy anticorrosion coatings [J]. J. Mater. Chem. A, 2019, 7(30): 17937
doi: 10.1039/C9TA03995C
41 Duan Y, Liu Y, Cui Y L, et al. Graphene to tune microwave absorption frequencies and enhance absorption properties of carbonyl iron/polyurethane coating [J]. Prog. Org. Coat., 2018, 125: 89
42 Cao Z F, Xia Y Q, Chen C. Fabrication of novel ionic liquids-doped polyaniline as lubricant additive for anti-corrosion and tribological properties [J]. Tribol Int, 2018, 120: 446
doi: 10.1016/j.triboint.2018.01.009
43 Wang H S, Shi P P, Rui M, et al. The green synthesis rGO/Fe3O4/PANI nanocomposites for enhanced electromagnetic waves absorption [J]. Prog. Org. Coat, 2020, 139: 105476
44 Li C, Li Y, Wang X, et al. Synthesis of hydrophobic fluoro-substituted polyaniline filler for the long-term anti-corrosion performance enhancement of epoxy coatings [J]. Corros Sci, 2021, 178: 109094
doi: 10.1016/j.corsci.2020.109094
45 Xu X F, Shi S H, Tang Y L, et al. Growth of NiAl-Layered double hydroxide on graphene toward excellent anticorrosive microwave absorption application [J]. Adv. Sci., 2021, 8(5): 2002658
doi: 10.1002/advs.v8.5
46 Zuo J D, Wu B, Luo C Y, et al. Preparation of MgAl layered double hydroxides intercalated with nitrite ions and corrosion protection of steel bars in simulated carbonated concrete pore solution [J]. Corros Sci, 2019, 152: 120
doi: 10.1016/j.corsci.2019.03.007
47 Ren H S, Li T, Wang H G, et al. Two birds with one stone: Superhelical chiral polypyrrole towards high-performance electromagnetic wave absorption and corrosion protection [J]. Chem. Eng. J., 2022, 427: 131582
doi: 10.1016/j.cej.2021.131582
[1] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[2] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[3] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[4] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[5] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[6] DONG Zhexuan, CHEN Ping, LIU Xingda. Effect of Plasma Treatment on Interfacial Properties of CF/PI Composites at Elevated Temperatures[J]. 材料研究学报, 2023, 37(12): 900-906.
[7] XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. 材料研究学报, 2023, 37(10): 731-738.
[8] WANG Yankun, WANG Yu, JI Wei, WANG Zhihui, PENG Xiangfei, HU Yuxiong, LIU Bin, XU Hong, BAI Peikang. Microstructure and Mechanical Properties of Carbon Fiber/Aluminum Laminated Composites[J]. 材料研究学报, 2022, 36(7): 536-544.
[9] ZONG Ping, LI Shiwei, CHEN Hong, MIAO Sainan, ZHANG Hui, LI Chao. In-situ Thermolysis Preparation of Carbon Capsulated Nano-copper and Its Stability[J]. 材料研究学报, 2022, 36(11): 829-836.
[10] ZONG Yixun, LI Shufeng, LIU Lei, ZHANG Xin, PAN Deng, WU Daihuiyu. Interface Regulation and Strengthening Mechanism of GNP-Ni/Cu Composites[J]. 材料研究学报, 2022, 36(10): 777-785.
[11] CHEN Guanzhen, CHEN Ping, XU Dongwei, MIN Weixing. Preparation and Microwave Absorbtion Performance of Composite Hollow Carbon/Fe3O4 Magnetic Quantum Dots[J]. 材料研究学报, 2022, 36(1): 29-39.
[12] HOU Jing, YANG Peizhi, ZHENG Qinhong, YANG Wen, ZHOU Qihang, LI Xueming. Preparation and Performance of Graphite/TiO2 Composite Photocatalyst[J]. 材料研究学报, 2021, 35(9): 703-711.
[13] YANG Yana, CHEN Wenge, XUE Yuanlin. Interficial Bonding within Cu-based Composites Reinforced with TiC- or Ni-coated Carbon Fiber[J]. 材料研究学报, 2021, 35(6): 467-473.
[14] LI Wanxi, DU Yi'en, GUO Fang, CHEN Yongqiang. Preparation and Electromagnetic Properties of CoFe2O4-Co3Fe7 Nanoparticles and CoFe2O4/Porous Carbon[J]. 材料研究学报, 2021, 35(4): 302-312.
[15] HU Manying, OUYANG Delai, CUI Xia, DU Haiming, XU Yong. Properties of TiC Reinforced Ti-Composites Synthesized in Situ by Microwave Sintering[J]. 材料研究学报, 2021, 35(4): 277-283.
No Suggested Reading articles found!