|
|
Mechanical Property and Thermal Insulation Performance of SiO2/ZrO2 Nanofiber Membranes with High Thermal Stability |
XU Hui, ZHANG Peiyuan, XU Nana, LIU Tao, ZHANG Xiaoshan( ), WANG Bing( ), WANG Yingde |
Science and Technology and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China |
|
Cite this article:
XU Hui, ZHANG Peiyuan, XU Nana, LIU Tao, ZHANG Xiaoshan, WANG Bing, WANG Yingde. Mechanical Property and Thermal Insulation Performance of SiO2/ZrO2 Nanofiber Membranes with High Thermal Stability. Chinese Journal of Materials Research, 2024, 38(5): 365-372.
|
Abstract The high strength, high temperature resistance and high thermal shock resistance of ceramic nanofibers are essential to high temperature thermal insulation materials, which have good application prospects in aerospace and other fields. The low thermal conductivity and good infrared refractive index of ZrO2 nanofibers have attracted much attention in the field of thermal insulation. However, the poor thermal stability (≤ 1200oC) of ZrO2 nanofiber limits their utilization in the field of high-temperature thermal insulation. In this study, a novel membrane of SiO2/ZrO2-0.5 nanofibers (d = 495.8 ± 45.5 nm) with high temperature resistance up to 1300oC was prepared by combining electrospinning technology and preceramic polymer pyrolysis method, the SiO2/ZrO2-0.5 nanofiber composed of amorphous SiO2 phase and t-ZrO2 nanocrystalline. The fabricated SiO2/ZrO2-0.5 nanofiber membrane shows high tensile strength (4.88 ± 0.27 MPa), good flexibility and excellent thermal insulation performance at high temperatures. Finally, it is worth noting in particular that the thermal conductivity of SiO2/ZrO2-0.5 nanofiber membrane is only 0.167 W·m-1·K-1 at 1000oC, which is significantly lower than those of the known traditional ceramic fiber membranes.
|
Received: 19 April 2023
|
|
Fund: Natural Science Foundation of Hunan Province(2021JJ20048);Stable Support for Science Research Projects in Key Laboratories(WDZC20235250501) |
Corresponding Authors:
ZHANG Xiaoshan, Tel: 13739086732, E-mail: zhangxiaoshan15@nudt.edu.cn; WANG Bing, Tel: 13687399626, E-mail: bingwang@nudt.edu.cn
|
1 |
Su L, Wang H J, Niu M, et al. Anisotropic and hierarchical SiC@SiO2 nanowire aerogel with exceptional stiffness and stability for thermal superinsulation[J]. Sci. Adv., 2020, 6(26): eaay6689
|
2 |
Si Y, Wang X Q, Dou L, et al. Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity[J]. Sci. Adv., 2018, 4(4): eaas8925
|
3 |
Zhang X X, Wang F, Dou L, et al. Ultrastrong, superelastic, and lamellar multiarch structured ZrO2-Al2O3 nanofibrous aerogels with high-temperature resistance over 1300oC[J]. ACS Nano, 2020, 14(11): 15616
|
4 |
Mao X, Bai Y, Yu J Y, et al. Flexible and highly temperature resistant polynanocrystalline zirconia nanofibrous membranes designed for air filtration[J]. J. Am. Ceram. Soc., 2016, 99(8): 2760
|
5 |
Si Y S, Mao X, Zheng H X, et al. Silica nanofibrous membranes with ultra-softness and enhanced tensile strength for thermal insulation[J]. RSC Adv., 2015, 5(8): 6027
|
6 |
Nakane K, Seto M, Irie S, et al. Alumina nanofibers obtained from poly(vinyl alcohol)/boehmite nanocomposites[J]. J. Appl. Polym. Sci., 2011, 121(3): 1774
|
7 |
Xian L, Zhang Y, Wu Y J, et al. Microstructural evolution of mullite nanofibrous aerogels with different ice crystal growth inhibitors[J]. Ceram. Int., 2020, 46(2): 1869
|
8 |
Zhang J P, Li B C, Li L X, et al. Ultralight, compressible and multifunctional carbon aerogels based on natural tubular cellulose[J]. J. Mater. Chem., 2016, 4A(6): 2069
|
9 |
Peng Y, Xie Y S, Wang L, et al. High-temperature flexible, stren-gth and hydrophobic YSZ/SiO2 nanofibrous membranes with excellent thermal insulation[J]. J. Eur. Ceram. Soc., 2021, 41(2): 1471
|
10 |
Castkova K, Maca K, Sekaninova J, et al. Electrospinning and thermal treatment of yttria doped zirconia fibres[J]. Ceram. Int., 2017, 43(10): 7581
|
11 |
Yang S Y, Lee J H, Kim J J, et al. Sintering behavior of Y-doped ZrO2 ceramics: the effect of Al2O3 and Nb2O5 addition[J]. Solid State Ionics, 2004, 172: 413
|
12 |
Ślosarczyk A. Recent advances in research on the synthetic fiber based silica aerogel nanocomposites[J]. Nanomaterials, 2017, 7(2): 44
|
13 |
Singh S, Singh V, Vijayakumar M, et al. Electrospun ZrO2 fibers obtained from polyvinyl alcohol/zirconium n-propoxide composite fibers processed through halide free sol-gel route using acetic acid as a stabilizer[J]. Mater. Lett., 2014, 115: 64
|
14 |
Liu C, Pan R Q, Hong C Q, et al. Effects of Zr on the precursor architecture and high-temperature nanostructure evolution of SiOC polymer-derived ceramics[J]. J. Eur. Ceram. Soc., 2016, 36(3): 395
|
15 |
Kim J, Lee J, Ha J H, et al. Effect of silica on flexibility of yttria-stabilized zirconia nanofibers for developing water purification membranes[J]. Ceram. Int., 2019, 45(14): 17696
|
16 |
Liu B X, Gao M, Liu X C, et al. Thermally stable nanoporous ZrO2/SiO2 hybrid aerogels for thermal insulation[J]. ACS Appl. Nano Mater., 2019, 2(11): 7299
|
17 |
Yu Z C, Xu C H, Yuan K K, et al. Characterization and adsorption mechanism of ZrO2 mesoporous fibers for health-hazardous fluoride removal[J]. J. Hazard. Mater., 2018, 346: 82
|
18 |
Shin S, Wang Q Y, Luo J, et al. Advanced materials for high-temperature thermal transport[J]. Adv. Funct. Mater., 2020, 30(8): 1904815
|
19 |
Wang T C, Zhang Z H, Dai C H, et al. Amorphous silicon and silicates-stabilized ZrO2 hollow fiber with low thermal conductivity and high phase stability derived from a cogon template[J]. Ceram. Int., 2019, 45(6): 7120
|
20 |
Wang T C, Yu Q K, Kong J, et al. Synthesis and heat-insulating properties of yttria-stabilized ZrO2 hollow fibers derived from a ceiba template[J]. Ceram. Int., 2017, 43(12): 9296
|
21 |
Shi S Y, Yuan K K, Xu C H, et al. Electrospun fabrication, excellent high-temperature thermal insulation and alkali resistance performance of calcium zirconate fiber[J]. Ceram. Int., 2018, 44(12): 14013
|
22 |
Zu G Q, Shen J, Wang W Q, et al. Robust, highly thermally stable, core-shell nanostructured metal oxide aerogels as high-temperature thermal superinsulators, adsorbents, and catalysts[J]. Chem. Mater., 2014, 26(19): 5761
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|