Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (5): 373-378    DOI: 10.11901/1005.3093.2023.225
ARTICLES Current Issue | Archive | Adv Search |
Preparation of Metal-organic Framework Porous Glass agSALEM-2
TAN Yiling1,2, LI Shichun2(), SUN Jie2
1.State Key Laboratory of Environmentally-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China
2.Institute of Chemical Materials, Academy of Engineering Physics, Mianyang 621900, China
Cite this article: 

TAN Yiling, LI Shichun, SUN Jie. Preparation of Metal-organic Framework Porous Glass agSALEM-2. Chinese Journal of Materials Research, 2024, 38(5): 373-378.

Download:  HTML  PDF(4431KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Metal-organic framework (MOF) glass with characteristics of porous and easy forming, shows broad application prospects in the fields of adsorption and separation. However, the porous structure will collapse and deform during the formation of MOF glass, which limits the separation performance of MOF glass, besides very few MOFs have been found so far. In this work, a novel MOF glass agSALEM-2 was prepared via successively melting and quenching processes, with MOF crystal SALEM-2 as precursor, which not only has a fusible chemical composition but also an abundant pore structure. The prepared melting-quenching process of SALEM-2 was investigated by means of XRD, SEM and TIG etc. The results show that before melting, the SALEM-2 undergoes thermally amorphization, recrystallization and decomposition processes sequentially; during melting, a part of the organic ligands 2-methylimidazole (MIm) in SALEM-2 decomposes to generate defects, leading to a lower melting point; during quenching, the MIm can prevent the re-formation of the framework structure and thus partially preserves its porous structure in the liquid state, the higher the quenching rate, the higher the degree of retention of the porous structure in the liquid state. Thus, the porous glass agSALEM-2 with a BET specific surface area of up to 150 m2/g was successfully prepared. This study enriches the variety of MOF glass materials and provides an effective strategy to enhance the porosity of MOF glasses.

Key words:  inorganic non-metallic materials      glass and amorphous      MOF glass      melt-quenching      porous      N2 adsorption     
Received:  13 April 2023     
ZTFLH:  TQ420.6+4  
Fund: National Natural Science Foundation of China(21606212)
Corresponding Authors:  LI Shichun, Tel: 18281436965, E-mail: lishichun@caep.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.225     OR     https://www.cjmr.org/EN/Y2024/V38/I5/373

Fig.1  Characterization of crystal structure and chemical composition of SALEM-2 and agSALEM-2 (a) XRD results; (b) NMR results; (c) SEM image of SALEM crystals; (d) SEM image of agSALEM
Fig.2  Characterization of SALEM-2 melt-quenching process (a) DSC results; (b) glass transition temperature Tg local DSC magnification
Fig.3  TG-DSC results during the melting process of SALEM-2
Fig.4  XRD patterns of SALEM-2, quenched product and simulated ZIF-zni
Fig.5  XRD spectrum of the prepared products at different quenching temperatures and rates (a) 835 K, (b) 840 K, (c) 845 K (ISO 3 min denotes 845 K for 3 minutes)
Fig.6  Effects of quenching rates on density of agSALEM-2 formed at quenching temperature of 845 K
Fig.7  Results of N2 adsorption on agSALEM-2 glass at different quenching rates at 845 K (a) adsorption isotherms; (b) variation of specific surface area with quenching rate
MOF glassPreparation methodsBET specific surface area [Ref.]
Ti-BPPSol-gel267 [22]
Ti-BPASol-gel330 [22]
Ti-FumSol-gel923 [23]
agZIF-4(Zn)Melting-quenching2.921 [24]
agZIF-62Melting-quenching0.012 [24]
agTIF-4Melting-quenching0.094 [24]
agZn(Im)2 (GIS)Melting-quenching0.450 [24]
agSALEM-2Melting-quenching150 [This work]
Table 1  Summary of BET specific surface area of MOF glass (m2/g)
1 McHugh L N, Bennett T D. Introducing porosity into metal-organic framework glasses[J]. J. Mater. Chem., 2022, 10A(37): 19552
2 Stepniewska M, Januchta K, Zhou C, et al. Observation of indentation-induced shear bands in a metal-organic framework glass[J]. Proc. Natl. Acad. Sci. USA, 2020, 117(19): 10149
doi: 10.1073/pnas.2000916117 pmid: 32341165
3 Tao H Z, Bennett T D, Yue Y Z. Melt‐quenched hybrid glasses from metal-organic frameworks[J]. Adv. Mater., 2017, 29(20): 1601705
4 Frentzel-Beyme L, Kolodzeiski P, Weiß J B, et al. Quantification of gas-accessible microporosity in metal-organic framework glasses[J]. Nat. Commun., 2022, 13: 7750
doi: 10.1038/s41467-022-35372-5 pmid: 36517486
5 Li S C, Limbach R, Longley L, et al. Mechanical properties and processing techniques of bulk metal-organic framework glasses[J]. J. Am. Chem. Soc., 2019, 141(2): 1027
doi: 10.1021/jacs.8b11357 pmid: 30582804
6 Gaillac R, Pullumbi P, Beyer K A, et al. Liquid metal-organic frameworks[J]. Nat. Mater., 2017, 16(11): 1149
doi: 10.1038/nmat4998 pmid: 29035353
7 Fonseca J, Gong T H, Jiao L, et al. Metal-organic frameworks (MOFs) beyond crystallinity: amorphous MOFs, MOF liquids and MOF glasses[J]. J. Mater. Chem., 2021, 9A(17): 10562
8 Wang Y H, Jin H, Ma Q, et al. A MOF glass membrane for gas separation[J]. Angew. Chem., 2020, 132(11): 4395
9 Hou J W, Chen P, Shukla A, et al. Liquid-phase sintering of lead halide perovskites and metal-organic framework glasses[J]. Science, 2021, 374(6567): 621
doi: 10.1126/science.abf4460 pmid: 34709926
10 Horike S, Umeyama D, Inukai M, et al. Coordination-network-based ionic plastic crystal for anhydrous proton conductivity[J]. J. Am. Chem. Soc., 2012, 134(18): 7612
doi: 10.1021/ja301875x pmid: 22512400
11 Bumstead A M, Gómez M L R, Thorne M F, et al. Investigating the melting behaviour of polymorphic zeolitic imidazolate frameworks[J]. CrystEngComm, 2020, 22(21): 3627
12 Hou J W, Ashling C W, Collins S M, et al. Metal-organic framework crystal-glass composites[J]. Nat. Commun., 2019, 10(1): 2580
doi: 10.1038/s41467-019-10470-z pmid: 31189892
13 Shi Q, Xu W J, Huang R K, et al. Zeolite CAN and AFI-type zeolitic imidazolate frameworks with large 12-membered ring pore openings synthesized using bulky amides as structure-directing agents[J]. J. Am. Chem. Soc., 2016, 138(50): 16232
doi: 10.1021/jacs.6b11197 pmid: 27936672
14 Longley L, Collins S M, Li S C, et al. Flux melting of metal-organic frameworks[J]. Chem. Sci., 2019, 10(12): 3592
doi: 10.1039/c8sc04044c pmid: 30996951
15 Frentzel-Beyme L, Kloß M, Kolodzeiski P, et al. Meltable mixed-linker zeolitic imidazolate frameworks and their microporous glasses: from melting point engineering to selective hydrocarbon sorption[J]. J. Am. Chem. Soc., 2019, 141(31): 12362
doi: 10.1021/jacs.9b05558 pmid: 31288513
16 Gandara-Loe J, Missyul A, Fauth F, et al. New insights into the breathing phenomenon in ZIF-4[J]. J. Mater. Chem., 2019, 7A(24): 14552
17 Frentzel-Beyme L, Kloß M, Pallach R, et al. Porous purple glass-a cobalt imidazolate glass with accessible porosity from a meltable cobalt imidazolate framework[J]. J. Mater. Chem., 2019, 7A(3): 985
18 Liang W B, Ricco R, Maddigan N K, et al. Control of structure topology and spatial distribution of biomacromolecules in protein@ZIF-8 biocomposites[J]. Chem. Mater., 2018, 30(3): 1069
19 Karagiaridi O, Lalonde M B, Bury W, et al. Opening ZIF-8: a catalytically active zeolitic imidazolate framework of sodalite topology with unsubstituted linkers[J]. J. Am. Chem. Soc., 2012, 134(45): 18790
doi: 10.1021/ja308786r pmid: 23088345
20 Bennett T D, Keen D A, Tan J C, et al. Thermal amorphization of zeolitic imidazolate frameworks[J]. Angew. Chem., 2011, 123(13): 3123
21 Hu J B, Liu Y, Liu J, et al. Effects of water vapor and trace gas impurities in flue gas on CO2 capture in zeolitic imidazolate frameworks: The significant role of functional groups[J]. Fuel, 2017, 200: 244
22 Zhao Y B, Lee S Y, Becknell N, et al. Nanoporous transparent MOF glasses with accessible internal surface[J]. J. Am. Chem. Soc., 2016, 138(34): 10818
doi: 10.1021/jacs.6b07078 pmid: 27539546
23 Xu W T, Hanikel N, Lomachenko K A, et al. High-porosity metal-organic framework glasses[J]. Angew. Chem., 2023, 135: e202300003
24 Bennett T D, Yue Y Z, Li P, et al. Melt-quenched glasses of metal-organic frameworks[J]. J. Am. Chem. Soc., 2016, 138(10): 3484
doi: 10.1021/jacs.5b13220 pmid: 26885940
[1] WANG Yan, ZHANG Hao, CHANG Na, WANG Haitao. Preparation of Acid-alkali Modified Coal Fly Ash Adsorbent and Its Removal Performance on Dyes[J]. 材料研究学报, 2024, 38(5): 379-389.
[2] XU Hui, ZHANG Peiyuan, XU Nana, LIU Tao, ZHANG Xiaoshan, WANG Bing, WANG Yingde. Mechanical Property and Thermal Insulation Performance of SiO2/ZrO2 Nanofiber Membranes with High Thermal Stability[J]. 材料研究学报, 2024, 38(5): 365-372.
[3] LI Jing, XU Yingchao, FAN Haoshuang, LU Yi, LI Li, ZHANG Xianyu. Preparation and Luminescence Properties of a Novel Double Perovskite Ca2GdSbO6:Sm3+ Reddish-orange Phosphor[J]. 材料研究学报, 2024, 38(4): 288-296.
[4] LIU Rui, ZHANG Dingdong, ZHANG Hui, REN Wencai, DU Jinhong. Effects of the Thickness of the Hole Transport Layer on the Performance of Graphene-based Organic Light-emitting Diodes[J]. 材料研究学报, 2024, 38(3): 168-176.
[5] ZHOU Lichen. Preparation of Fluorine Modified Titanium Dioxide Catalyst and Its Photocatalytic Degradation for Oilfield Wastewater[J]. 材料研究学报, 2024, 38(2): 141-150.
[6] LI Bosen, LIAO Zhongxin, GAO Daqiang. Effect of BNZ Component on Structure and Property of KNN Based Lead-free Piezoelectric Ceramics[J]. 材料研究学报, 2024, 38(1): 51-60.
[7] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[8] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[9] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[10] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[11] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[12] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[13] LI Hailong, MU Juan, WANG Yuanyuan, GE Shaofan, LIU Chunming, ZHANG Haifeng, ZHU Zhengwang. Preparation and Electrocatalytic Oxygen Evolution Performance of a Novel Porous MnNiCoCrFe High-entropy Alloy as Electrocatalytic Electrode Material[J]. 材料研究学报, 2023, 37(5): 332-340.
[14] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[15] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
No Suggested Reading articles found!