|
|
Preparation of Metal-organic Framework Porous Glass agSALEM-2 |
TAN Yiling1,2, LI Shichun2( ), SUN Jie2 |
1.State Key Laboratory of Environmentally-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China 2.Institute of Chemical Materials, Academy of Engineering Physics, Mianyang 621900, China |
|
Cite this article:
TAN Yiling, LI Shichun, SUN Jie. Preparation of Metal-organic Framework Porous Glass agSALEM-2. Chinese Journal of Materials Research, 2024, 38(5): 373-378.
|
Abstract Metal-organic framework (MOF) glass with characteristics of porous and easy forming, shows broad application prospects in the fields of adsorption and separation. However, the porous structure will collapse and deform during the formation of MOF glass, which limits the separation performance of MOF glass, besides very few MOFs have been found so far. In this work, a novel MOF glass agSALEM-2 was prepared via successively melting and quenching processes, with MOF crystal SALEM-2 as precursor, which not only has a fusible chemical composition but also an abundant pore structure. The prepared melting-quenching process of SALEM-2 was investigated by means of XRD, SEM and TIG etc. The results show that before melting, the SALEM-2 undergoes thermally amorphization, recrystallization and decomposition processes sequentially; during melting, a part of the organic ligands 2-methylimidazole (MIm) in SALEM-2 decomposes to generate defects, leading to a lower melting point; during quenching, the MIm can prevent the re-formation of the framework structure and thus partially preserves its porous structure in the liquid state, the higher the quenching rate, the higher the degree of retention of the porous structure in the liquid state. Thus, the porous glass agSALEM-2 with a BET specific surface area of up to 150 m2/g was successfully prepared. This study enriches the variety of MOF glass materials and provides an effective strategy to enhance the porosity of MOF glasses.
|
Received: 13 April 2023
|
|
Fund: National Natural Science Foundation of China(21606212) |
Corresponding Authors:
LI Shichun, Tel: 18281436965, E-mail: lishichun@caep.cn
|
1 |
McHugh L N, Bennett T D. Introducing porosity into metal-organic framework glasses[J]. J. Mater. Chem., 2022, 10A(37): 19552
|
2 |
Stepniewska M, Januchta K, Zhou C, et al. Observation of indentation-induced shear bands in a metal-organic framework glass[J]. Proc. Natl. Acad. Sci. USA, 2020, 117(19): 10149
doi: 10.1073/pnas.2000916117
pmid: 32341165
|
3 |
Tao H Z, Bennett T D, Yue Y Z. Melt‐quenched hybrid glasses from metal-organic frameworks[J]. Adv. Mater., 2017, 29(20): 1601705
|
4 |
Frentzel-Beyme L, Kolodzeiski P, Weiß J B, et al. Quantification of gas-accessible microporosity in metal-organic framework glasses[J]. Nat. Commun., 2022, 13: 7750
doi: 10.1038/s41467-022-35372-5
pmid: 36517486
|
5 |
Li S C, Limbach R, Longley L, et al. Mechanical properties and processing techniques of bulk metal-organic framework glasses[J]. J. Am. Chem. Soc., 2019, 141(2): 1027
doi: 10.1021/jacs.8b11357
pmid: 30582804
|
6 |
Gaillac R, Pullumbi P, Beyer K A, et al. Liquid metal-organic frameworks[J]. Nat. Mater., 2017, 16(11): 1149
doi: 10.1038/nmat4998
pmid: 29035353
|
7 |
Fonseca J, Gong T H, Jiao L, et al. Metal-organic frameworks (MOFs) beyond crystallinity: amorphous MOFs, MOF liquids and MOF glasses[J]. J. Mater. Chem., 2021, 9A(17): 10562
|
8 |
Wang Y H, Jin H, Ma Q, et al. A MOF glass membrane for gas separation[J]. Angew. Chem., 2020, 132(11): 4395
|
9 |
Hou J W, Chen P, Shukla A, et al. Liquid-phase sintering of lead halide perovskites and metal-organic framework glasses[J]. Science, 2021, 374(6567): 621
doi: 10.1126/science.abf4460
pmid: 34709926
|
10 |
Horike S, Umeyama D, Inukai M, et al. Coordination-network-based ionic plastic crystal for anhydrous proton conductivity[J]. J. Am. Chem. Soc., 2012, 134(18): 7612
doi: 10.1021/ja301875x
pmid: 22512400
|
11 |
Bumstead A M, Gómez M L R, Thorne M F, et al. Investigating the melting behaviour of polymorphic zeolitic imidazolate frameworks[J]. CrystEngComm, 2020, 22(21): 3627
|
12 |
Hou J W, Ashling C W, Collins S M, et al. Metal-organic framework crystal-glass composites[J]. Nat. Commun., 2019, 10(1): 2580
doi: 10.1038/s41467-019-10470-z
pmid: 31189892
|
13 |
Shi Q, Xu W J, Huang R K, et al. Zeolite CAN and AFI-type zeolitic imidazolate frameworks with large 12-membered ring pore openings synthesized using bulky amides as structure-directing agents[J]. J. Am. Chem. Soc., 2016, 138(50): 16232
doi: 10.1021/jacs.6b11197
pmid: 27936672
|
14 |
Longley L, Collins S M, Li S C, et al. Flux melting of metal-organic frameworks[J]. Chem. Sci., 2019, 10(12): 3592
doi: 10.1039/c8sc04044c
pmid: 30996951
|
15 |
Frentzel-Beyme L, Kloß M, Kolodzeiski P, et al. Meltable mixed-linker zeolitic imidazolate frameworks and their microporous glasses: from melting point engineering to selective hydrocarbon sorption[J]. J. Am. Chem. Soc., 2019, 141(31): 12362
doi: 10.1021/jacs.9b05558
pmid: 31288513
|
16 |
Gandara-Loe J, Missyul A, Fauth F, et al. New insights into the breathing phenomenon in ZIF-4[J]. J. Mater. Chem., 2019, 7A(24): 14552
|
17 |
Frentzel-Beyme L, Kloß M, Pallach R, et al. Porous purple glass-a cobalt imidazolate glass with accessible porosity from a meltable cobalt imidazolate framework[J]. J. Mater. Chem., 2019, 7A(3): 985
|
18 |
Liang W B, Ricco R, Maddigan N K, et al. Control of structure topology and spatial distribution of biomacromolecules in protein@ZIF-8 biocomposites[J]. Chem. Mater., 2018, 30(3): 1069
|
19 |
Karagiaridi O, Lalonde M B, Bury W, et al. Opening ZIF-8: a catalytically active zeolitic imidazolate framework of sodalite topology with unsubstituted linkers[J]. J. Am. Chem. Soc., 2012, 134(45): 18790
doi: 10.1021/ja308786r
pmid: 23088345
|
20 |
Bennett T D, Keen D A, Tan J C, et al. Thermal amorphization of zeolitic imidazolate frameworks[J]. Angew. Chem., 2011, 123(13): 3123
|
21 |
Hu J B, Liu Y, Liu J, et al. Effects of water vapor and trace gas impurities in flue gas on CO2 capture in zeolitic imidazolate frameworks: The significant role of functional groups[J]. Fuel, 2017, 200: 244
|
22 |
Zhao Y B, Lee S Y, Becknell N, et al. Nanoporous transparent MOF glasses with accessible internal surface[J]. J. Am. Chem. Soc., 2016, 138(34): 10818
doi: 10.1021/jacs.6b07078
pmid: 27539546
|
23 |
Xu W T, Hanikel N, Lomachenko K A, et al. High-porosity metal-organic framework glasses[J]. Angew. Chem., 2023, 135: e202300003
|
24 |
Bennett T D, Yue Y Z, Li P, et al. Melt-quenched glasses of metal-organic frameworks[J]. J. Am. Chem. Soc., 2016, 138(10): 3484
doi: 10.1021/jacs.5b13220
pmid: 26885940
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|