Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (5): 365-372    DOI: 10.11901/1005.3093.2023.232
ARTICLES Current Issue | Archive | Adv Search |
Mechanical Property and Thermal Insulation Performance of SiO2/ZrO2 Nanofiber Membranes with High Thermal Stability
XU Hui, ZHANG Peiyuan, XU Nana, LIU Tao, ZHANG Xiaoshan(), WANG Bing(), WANG Yingde
Science and Technology and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
Cite this article: 

XU Hui, ZHANG Peiyuan, XU Nana, LIU Tao, ZHANG Xiaoshan, WANG Bing, WANG Yingde. Mechanical Property and Thermal Insulation Performance of SiO2/ZrO2 Nanofiber Membranes with High Thermal Stability. Chinese Journal of Materials Research, 2024, 38(5): 365-372.

Download:  HTML  PDF(11392KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The high strength, high temperature resistance and high thermal shock resistance of ceramic nanofibers are essential to high temperature thermal insulation materials, which have good application prospects in aerospace and other fields. The low thermal conductivity and good infrared refractive index of ZrO2 nanofibers have attracted much attention in the field of thermal insulation. However, the poor thermal stability (≤ 1200oC) of ZrO2 nanofiber limits their utilization in the field of high-temperature thermal insulation. In this study, a novel membrane of SiO2/ZrO2-0.5 nanofibers (d = 495.8 ± 45.5 nm) with high temperature resistance up to 1300oC was prepared by combining electrospinning technology and preceramic polymer pyrolysis method, the SiO2/ZrO2-0.5 nanofiber composed of amorphous SiO2 phase and t-ZrO2 nanocrystalline. The fabricated SiO2/ZrO2-0.5 nanofiber membrane shows high tensile strength (4.88 ± 0.27 MPa), good flexibility and excellent thermal insulation performance at high temperatures. Finally, it is worth noting in particular that the thermal conductivity of SiO2/ZrO2-0.5 nanofiber membrane is only 0.167 W·m-1·K-1 at 1000oC, which is significantly lower than those of the known traditional ceramic fiber membranes.

Key words:  inorganic non-metallic materials      electrospinning      SiO2/ZrO2 nanofiber membranes      high temperature resistance      thermal insulation performance     
Received:  19 April 2023     
ZTFLH:  TQ343  
Fund: Natural Science Foundation of Hunan Province(2021JJ20048);Stable Support for Science Research Projects in Key Laboratories(WDZC20235250501)
Corresponding Authors:  ZHANG Xiaoshan, Tel: 13739086732, E-mail: zhangxiaoshan15@nudt.edu.cn
WANG Bing, Tel: 13687399626, E-mail: bingwang@nudt.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.232     OR     https://www.cjmr.org/EN/Y2024/V38/I5/365

Fig.1  Sample size diagram of strength test (a) and optical photograph of strength test (b)
Fig.2  FIIR spectra of various PZSO fiber (a) and viscosity and electrical conductivity of various PZSO solution (b)
Fig.3  SEM image and fiber diameter distribution of SiO2/ZrO2 nanofiber (a, d) SiO2/ZrO2-2 nanofiber; (b, e) SiO2/ZrO2-1 nanofiber; (c, f) SiO2/ZrO2-0.5 nanofiber
SamplesSiO2/ZrO2-2SiO2/ZrO2-1SiO2/ZrO2-0.5
Zr content6.710.412.6
Table 1  Zirconium elemental content of SiO2/ZrO2 nanofibers (mass fraction, %)
Fig.4  XRD patterns of SiO2/ZrO2 nanofiber
Fig.5  TEM image (a), high resolution TEM (b, c) and EDS-mapping image (d) of SiO2/ZrO2-0.5 nanofiber
Fig.6  XPS survey spectra (a) and peak fittings of Zr3d (b), Si2p (c), O1s (d) of SiO2/ZrO2 nanofibers
Fig.7  Typical tensile strength-strain curves (a),tensile strength (b) and true density and volume density (c) and photograph (d) of a piece of SiO2/ZrO2-0.5 nanofiber membrane hanging a 100 g weight, twisting and rolling
Fig.8  Thermo-gravimetric curve of SiO2/ZrO2-0.5 nanofiber membrane; inset is the photograph of SiO2/ZrO2-0.5 nanofiber membrane after heat treated at 1300oC (a); SEM image of SiO2/ZrO2-0.5 nanofiber membrane after heat treated (b); e value of SiO2/ZrO2 nanofiber membrane in the 2.5~5 μm (c) and thermal conductivities (d) of SiO2/ZrO2-0.5 nanofiber membrane and other ceramic fiber membranes
1 Su L, Wang H J, Niu M, et al. Anisotropic and hierarchical SiC@SiO2 nanowire aerogel with exceptional stiffness and stability for thermal superinsulation[J]. Sci. Adv., 2020, 6(26): eaay6689
2 Si Y, Wang X Q, Dou L, et al. Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity[J]. Sci. Adv., 2018, 4(4): eaas8925
3 Zhang X X, Wang F, Dou L, et al. Ultrastrong, superelastic, and lamellar multiarch structured ZrO2-Al2O3 nanofibrous aerogels with high-temperature resistance over 1300oC[J]. ACS Nano, 2020, 14(11): 15616
4 Mao X, Bai Y, Yu J Y, et al. Flexible and highly temperature resistant polynanocrystalline zirconia nanofibrous membranes designed for air filtration[J]. J. Am. Ceram. Soc., 2016, 99(8): 2760
5 Si Y S, Mao X, Zheng H X, et al. Silica nanofibrous membranes with ultra-softness and enhanced tensile strength for thermal insulation[J]. RSC Adv., 2015, 5(8): 6027
6 Nakane K, Seto M, Irie S, et al. Alumina nanofibers obtained from poly(vinyl alcohol)/boehmite nanocomposites[J]. J. Appl. Polym. Sci., 2011, 121(3): 1774
7 Xian L, Zhang Y, Wu Y J, et al. Microstructural evolution of mullite nanofibrous aerogels with different ice crystal growth inhibitors[J]. Ceram. Int., 2020, 46(2): 1869
8 Zhang J P, Li B C, Li L X, et al. Ultralight, compressible and multifunctional carbon aerogels based on natural tubular cellulose[J]. J. Mater. Chem., 2016, 4A(6): 2069
9 Peng Y, Xie Y S, Wang L, et al. High-temperature flexible, stren-gth and hydrophobic YSZ/SiO2 nanofibrous membranes with excellent thermal insulation[J]. J. Eur. Ceram. Soc., 2021, 41(2): 1471
10 Castkova K, Maca K, Sekaninova J, et al. Electrospinning and thermal treatment of yttria doped zirconia fibres[J]. Ceram. Int., 2017, 43(10): 7581
11 Yang S Y, Lee J H, Kim J J, et al. Sintering behavior of Y-doped ZrO2 ceramics: the effect of Al2O3 and Nb2O5 addition[J]. Solid State Ionics, 2004, 172: 413
12 Ślosarczyk A. Recent advances in research on the synthetic fiber based silica aerogel nanocomposites[J]. Nanomaterials, 2017, 7(2): 44
13 Singh S, Singh V, Vijayakumar M, et al. Electrospun ZrO2 fibers obtained from polyvinyl alcohol/zirconium n-propoxide composite fibers processed through halide free sol-gel route using acetic acid as a stabilizer[J]. Mater. Lett., 2014, 115: 64
14 Liu C, Pan R Q, Hong C Q, et al. Effects of Zr on the precursor architecture and high-temperature nanostructure evolution of SiOC polymer-derived ceramics[J]. J. Eur. Ceram. Soc., 2016, 36(3): 395
15 Kim J, Lee J, Ha J H, et al. Effect of silica on flexibility of yttria-stabilized zirconia nanofibers for developing water purification membranes[J]. Ceram. Int., 2019, 45(14): 17696
16 Liu B X, Gao M, Liu X C, et al. Thermally stable nanoporous ZrO2/SiO2 hybrid aerogels for thermal insulation[J]. ACS Appl. Nano Mater., 2019, 2(11): 7299
17 Yu Z C, Xu C H, Yuan K K, et al. Characterization and adsorption mechanism of ZrO2 mesoporous fibers for health-hazardous fluoride removal[J]. J. Hazard. Mater., 2018, 346: 82
18 Shin S, Wang Q Y, Luo J, et al. Advanced materials for high-temperature thermal transport[J]. Adv. Funct. Mater., 2020, 30(8): 1904815
19 Wang T C, Zhang Z H, Dai C H, et al. Amorphous silicon and silicates-stabilized ZrO2 hollow fiber with low thermal conductivity and high phase stability derived from a cogon template[J]. Ceram. Int., 2019, 45(6): 7120
20 Wang T C, Yu Q K, Kong J, et al. Synthesis and heat-insulating properties of yttria-stabilized ZrO2 hollow fibers derived from a ceiba template[J]. Ceram. Int., 2017, 43(12): 9296
21 Shi S Y, Yuan K K, Xu C H, et al. Electrospun fabrication, excellent high-temperature thermal insulation and alkali resistance performance of calcium zirconate fiber[J]. Ceram. Int., 2018, 44(12): 14013
22 Zu G Q, Shen J, Wang W Q, et al. Robust, highly thermally stable, core-shell nanostructured metal oxide aerogels as high-temperature thermal superinsulators, adsorbents, and catalysts[J]. Chem. Mater., 2014, 26(19): 5761
[1] WANG Yan, ZHANG Hao, CHANG Na, WANG Haitao. Preparation of Acid-alkali Modified Coal Fly Ash Adsorbent and Its Removal Performance on Dyes[J]. 材料研究学报, 2024, 38(5): 379-389.
[2] TAN Yiling, LI Shichun, SUN Jie. Preparation of Metal-organic Framework Porous Glass agSALEM-2[J]. 材料研究学报, 2024, 38(5): 373-378.
[3] LI Jing, XU Yingchao, FAN Haoshuang, LU Yi, LI Li, ZHANG Xianyu. Preparation and Luminescence Properties of a Novel Double Perovskite Ca2GdSbO6:Sm3+ Reddish-orange Phosphor[J]. 材料研究学报, 2024, 38(4): 288-296.
[4] LIU Rui, ZHANG Dingdong, ZHANG Hui, REN Wencai, DU Jinhong. Effects of the Thickness of the Hole Transport Layer on the Performance of Graphene-based Organic Light-emitting Diodes[J]. 材料研究学报, 2024, 38(3): 168-176.
[5] ZHOU Lichen. Preparation of Fluorine Modified Titanium Dioxide Catalyst and Its Photocatalytic Degradation for Oilfield Wastewater[J]. 材料研究学报, 2024, 38(2): 141-150.
[6] LI Bosen, LIAO Zhongxin, GAO Daqiang. Effect of BNZ Component on Structure and Property of KNN Based Lead-free Piezoelectric Ceramics[J]. 材料研究学报, 2024, 38(1): 51-60.
[7] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[8] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[9] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[10] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[11] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[12] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[13] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[14] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[15] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
No Suggested Reading articles found!