Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (5): 356-364    DOI: 10.11901/1005.3093.2023.270
ARTICLES Current Issue | Archive | Adv Search |
Effect of Aging Treatment on Microstructure Evolution and Mechanical Properties of Fe-12Mn-8Al-1C-3Cu Lightweight Steel
LIU Jiaxiao1,2, HU Xiao1,2, DING Hua1,2()
1.School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2.Key Laboratory of Lightweight Structural Materials, Liaoning Province, Northeastern University, Shenyang 110819, China
Cite this article: 

LIU Jiaxiao, HU Xiao, DING Hua. Effect of Aging Treatment on Microstructure Evolution and Mechanical Properties of Fe-12Mn-8Al-1C-3Cu Lightweight Steel. Chinese Journal of Materials Research, 2024, 38(5): 356-364.

Download:  HTML  PDF(15503KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

By aging treatment of a medium manganese lightweight steel at 550oC, the evolution of its microstructure and mechanical properties was analyzed. The results indicate that aging treatment has a significant impact on precipitates. When the aging time is less than 30 minutes, a large number of intragranular κ'-carbides formed by spinodal decomposition, which distributed dispersedly in the austenite matrix. As the aging time increases, besides the intragranular κ'-carbides, intergranular κ-carbides are also formed at grain boundaries through eutectoid reactions as a layered structure of α ferrite and κ-carbide. Intragranular κ'-carbides greatly increase the strength, but intergranular κ-carbides significantly reduce the ductility of the steel. Compared with long-time aging, the strength of the steel can be significantly increased by short-time aging, while the steel still maintains a high elongation with better overall mechanical properties. Among them, the good performance is achieved for the steel after aging for 30 minutes, namely a tensile strength of 1031 MPa, yield strength of 784 MPa, an elongation of 41.08%, and a product of strength and elongation of 42.35 GPa·%.

Key words:  metallic materials      lightweight steel      aging treatment      microstructural evolution      strain hardening      dislocation slip     
Received:  30 May 2023     
ZTFLH:  TG142.1  
Fund: National Natural Science Foundation of China(U1760205)
Corresponding Authors:  DING Hua, Tel: (024)23604263, E-mail: dingh@smm.neu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.270     OR     https://www.cjmr.org/EN/Y2024/V38/I5/356

SteelCMnAlCuFe
Fe-12Mn-8Al-1C-3Cu1.0212.088.343.31Bal.
Table 1  Actual compositions of experimental steels (mass, %)
Fig.1  Schematic illustration of the thermomechanical process(CR: cold rolling; HR: hot rolling; WQ: water cooling)
Fig.2  XRD profiles of the experimental steel aged at 550oC for different time
Fig.3  SEM microstructures of the experimental steel aged at 550oC for different time (a) 0 min, (b) 10 min, (c) 30 min, (d) 60 min, (e) 300 min, (f) 900 min
AT / min0103060300900
GS / μm22.4722.4922.5622.8423.2124.36
Table 2  Average size of austenite grains after heat treatment for different time
Fig.4  TEM of experimental steels aged at 550oC for different times (a) 10 min, (b) 60 min, (c) 300 min, (d) 900 min, (e) intergranular κ-carbides aged about 900 min, (f, g) the TEM and EDS of the Cu-rich precipitate aged about 30 min
Fig.5  Representative engineering stress-strain curves (a) and the variation of mechanical properties (b) of the experimental steel aged at 550oC for different time
Fig.6  TEM morphology of deformation structure of the experimental steel aged at 550oC for 10 min with different deformation extents (a) 5 %; (b) 10%; (c) 20%; (d) 30%; (e) 40%
Fig.7  EBSD analysis of the experimental steel aged at 550oC for 300 min (a) the K-S and N-W relationships of all phase boundary after aging 300 min; (b) the K-S and N-W relationships of intergranular κ-carbide vs. austenite/ferrite at grain boundaries
Fig.8  Relationship between strain hardening rate and true strain of the experimental steels
1 Zhen W Y. Explore the new opportunity and situation of the domestic auto industry after the epidemic[J]. Auto Rev., 2020, (7): 36
甄文媛. 探寻疫后国内汽车产业的新机与新局[J]. 汽车纵横, 2020, (7): 36
2 Ma M T, Yi H L, Lu H Z, et al. On the lightweighting of automobile[J]. Strategic Study CAE, 2009, 11(9): 20
马鸣图, 易红亮, 路洪洲 等. 论汽车轻量化[J]. 中国工程科学, 2009, 11(9): 20
3 Xiong P L. Research progress of lightweight automotive materials and structures[J]. Auto Time, 2020, (1): 96
熊培练. 汽车材料及结构轻量化的研究进展[J]. 时代汽车, 2020, (1): 96
4 Chen S P, Rana R, Haldar A, et al. Current state of Fe-Mn-Al-C low density steels[J]. Prog. Mater. Sci., 2017, 89: 345
5 Yang F Q, Song R B, Li Y P, et al. Tensile deformation of low density duplex Fe-Mn-Al-C steel[J]. Mater. Des., 2015, 76: 32
6 Zhang L F, Song R B, Zhao C, et al. Evolution of the microstructure and mechanical properties of an austenite-ferrite Fe-Mn-Al-C steel[J]. Mater. Sci. Eng., 2015, 643A: 183
7 Chang K M, Chao C G, Liu T F. Excellent combination of strength and ductility in an Fe-9Al-28Mn-1.8C alloy[J]. Scr. Mater., 2010, 63(2): 162
8 Lin C L, Chao C G, Juang J Y, et al. Deformation mechanisms in ultrahigh-strength and high-ductility nanostructured FeMnAlC alloy[J]. J. Alloys Compd., 2014, 586: 616
9 Gutierrez-Urrutia I, Raabe D. Influence of Al content and precipitation state on the mechanical behavior of austenitic high-Mn low-density steels[J]. Scr. Mater., 2013, 68(6): 343
10 Frommeyer G, Brüx U. Microstructures and mechanical properties of high-strength Fe-Mn-Al-C light-weight TRIPLEX steels[J]. Steel Res. Int., 2006, 77(9-10): 627
11 Bartlett L N, Van Aken D C, Medvedeva J, et al. An atom probe study of kappa carbide precipitation and the effect of silicon addition[J]. Metall. Mater. Trans., 2014, 45A(5): 2421
12 Han K H, Choo W K. Phase decomposition of rapidly solidified Fe-Mn-Al-C austenitic alloys[J]. Metall. Trans., 1989, 20A(2): 205
13 Liu S Z, Li Y, Wang C X, et al. Effects of solution treatment on microstructures and properties of Fe-Mn-Al-C low density steel[J]. Heat Treat. Met., 2015, 40(9): 120
刘少尊, 厉 勇, 王春旭 等. 固溶处理对Fe-Mn-Al-C系低密度钢组织与性能的影响[J]. 金属热处理, 2015, 40(9): 120
14 Kalashnikov I, Shalkevich A, Acselrad O, et al. Chemical composition optimization for austenitic steels of the Fe-Mn-Al-C system[J]. J. Mater. Eng. Perform., 2000, 9(6): 597
15 Welsch E, Ponge D, Haghighat S M H, et al. Strain hardening by dynamic slip band refinement in a high-Mn lightweight steel[J]. Acta Mater., 2016, 116: 188
16 Haase C, Zehnder C, Ingendahl T, et al. On the deformation behavior of κ-carbide-free and κ-carbide-containing high-Mn light-wei-ght steel[J]. Acta Mater., 2017, 122: 332
17 Yao M J, Welsch E, Ponge D, et al. Strengthening and strain hardening mechanisms in a precipitation-hardened high-Mn lightweight steel[J]. Acta Mater., 2017, 140: 258
18 Wu Z Q, Ding H, An X H, et al. Influence of Al content on the strain-hardening behavior of aged low density Fe-Mn-Al-C steels with high Al content[J]. Mater. Sci. Eng., 2015, 639A: 187
19 Banis A, Gomez A, Bliznuk V, et al. Microstructure evolution and mechanical behavior of Fe-Mn-Al-C low-density steel upon aging[J]. Mater. Sci. Eng., 2023, 875A: 145109
20 Yoo J D, Hwang S W, Park K T. Origin of extended tensile ductility of a Fe-28Mn-10Al-1C steel[J]. Metall. Mater. Trans., 2009, 40A(7): 1520
21 Welsch E, Ponge D, Haghighat S M H, et al. Strain hardening by dynamic slip band refinement in a high-Mn lightweight steel[J]. Acta Mater., 2016, 116: 188
22 Xi T, Shahzad M B, Xu D K, et al. Copper precipitation behavior and mechanical properties of Cu-bearing 316L austenitic stainless steel: a comprehensive cross-correlation study[J]. Mater. Sci. Eng., 2016, 675A: 243
23 Tan S P, Wang Z H, Cheng S C, et al. Effect of Cu content on aging precipitation behaviors of Cu-rich phase in Fe-Cr-Ni alloy[J]. J. Iron Steel Res. Int., 2010, 17(5): 63
24 Gaber A, Ali A M, Matsuda K, et al. Study of the developed precipitates in Al-0.63Mg-0.37Si-0.5Cu (wt.%) alloy by using DSC and TEM techniques[J]. J. Alloys Compd., 2007, 432(1-2): 149
25 Chen Z, Liu M X, Zhang J K, et al. Effect of annealing treatment on microstructures and properties of austenite-based Fe-28Mn-9Al-0.8C lightweight steel with addition of Cu[J]. China Foundry, 2021, 18(3): 207
doi: 10.1007/s41230-021-1026-6
26 Song H, Yoo J, Kim S H, et al. Novel ultra-high-strength Cu-containing medium-Mn duplex lightweight steels[J]. Acta Mater., 2017, 135: 215
27 Haase C, Zehnder C, Ingendahl T, et al. On the deformation behavior of κ-carbide-free and κ-carbide-containing high-Mn light-weight steel[J]. Acta Mater., 2017, 122: 332
28 Choo W K, Kim J H, Yoon J C. Microstructural change in austenitic Fe-30.0wt%Mn-7.8wt%Al-1.3wt%C initiated by spinodal decomposition and its influence on mechanical properties[J]. Acta Mater., 1997, 45(12): 4877
29 Cheng W C. Phase transformations of an Fe-0.85 C-17.9 Mn-7.1 al austenitic steel after quenching and annealing[J]. JOM, 2014, 66(9): 1809
30 Liu D G, Cai M H, Ding H, et al. Control of inter/intra-granular κ-carbides and its influence on overall mechanical properties of a Fe-11Mn-10Al-1.25C low density steel[J]. Mater. Sci. Eng., 2018, 715A: 25
31 Han D. Investigations on the microstructures-properties relationship and deformation mechanism in high strength Fe-Mn-Al-C low density steels[D]. Shenyang: Northeastern University, 2020
韩 东. Fe-Mn-Al-C低密度高强钢的组织性能及变形机制研究[D]. 沈阳: 东北大学, 2020
32 Cheng W C, Song Y S, Lin Y S, et al. On the eutectoid reaction in a quaternary Fe-C-Mn-Al alloy: austenite→ferrite + kappa-carbide + M23C6 carbide[J]. Metall. Mater. Trans., 2014, 45A(3): 1199
33 Lu W J, Zhang X F, Qin R S. κ-carbide hardening in a low-density high-Al high-Mn multiphase steel[J]. Mater. Lett., 2015, 138: 96
34 Zhang M X, Kelly P M. The morphology and formation mechanism of pearlite in steels[J]. Mater. Charact., 2009, 60(6): 545
35 Darken L S, Fisher P M. Decomposition of Austenite by Diffusional Processes[M]. New York: Intersciences Publishers, 1962: 197
36 Lee J, Park S, Kim H, et al. Simulation of κ-carbide precipitation kinetics in aged low-density Fe-Mn-Al-C steels and its effects on strengthening[J]. Met. Mater. Int., 2018, 24: 702
37 Ding H, Han D, Zhang J, et al. Tensile deformation behavior analysis of low density Fe-18Mn-10Al-xC steels[J]. Mater. Sci. Eng., 2016, 652A: 69
38 Lin C L, Chao C G, Juang J Y, et al. Deformation mechanisms in ultrahigh-strength and high-ductility nanostructured FeMnAlC alloy[J]. J. Alloys Compd., 2014, 586: 616
39 Wu Z Q. Investigations on the microstructures-properties relationship and deformation mechanism in high strength and high ductility low density steels[D]. Shenyang: Northeastern University, 2015
吴志强. 高强度高塑性低密度钢的组织性能和变形机制研究[D]. 沈阳: 东北大学, 2015
[1] WU Yingming, JIANG Keda, LIU Shengdan, FAN Shitong, QIN Qiuhui, LI Jun. Hot Compression Deformation Behavior of 6013 Aluminum Alloy by Low lnZ[J]. 材料研究学报, 2024, 38(5): 337-346.
[2] LI Ruohao, HU Xiaoyu, WANG Zhongcheng, LI Hao, YANG Yong, XU Le, LIANG Enpu, HE Xiaofei. High-temperature Mechanical Properties and Strengthening Mechanism of New Secondary Hardened Steel 25CrMo3NiTiVNbZr[J]. 材料研究学报, 2024, 38(5): 390-400.
[3] WANG Qiang, ZHU Heyu, LIU Zhibo, ZHU Yi, LIU Peitao, REN Wencai. Electron Microscopy Study of Stacking Defects in β-In2Se3[J]. 材料研究学报, 2024, 38(5): 330-336.
[4] WANG Yan, ZHANG Hao, CHANG Na, WANG Haitao. Preparation of Acid-alkali Modified Coal Fly Ash Adsorbent and Its Removal Performance on Dyes[J]. 材料研究学报, 2024, 38(5): 379-389.
[5] TAN Yiling, LI Shichun, SUN Jie. Preparation of Metal-organic Framework Porous Glass agSALEM-2[J]. 材料研究学报, 2024, 38(5): 373-378.
[6] XU Hui, ZHANG Peiyuan, XU Nana, LIU Tao, ZHANG Xiaoshan, WANG Bing, WANG Yingde. Mechanical Property and Thermal Insulation Performance of SiO2/ZrO2 Nanofiber Membranes with High Thermal Stability[J]. 材料研究学报, 2024, 38(5): 365-372.
[7] LI Jing, XU Yingchao, FAN Haoshuang, LU Yi, LI Li, ZHANG Xianyu. Preparation and Luminescence Properties of a Novel Double Perovskite Ca2GdSbO6:Sm3+ Reddish-orange Phosphor[J]. 材料研究学报, 2024, 38(4): 288-296.
[8] WANG Yuzhao, JIANG Zhonghua, JIA Chunni, ZHANG Yutuo, WANG Pei. Microstructure and Mechanical Properties of an Austempered Nanostructured Bainitic Steel[J]. 材料研究学报, 2024, 38(4): 279-287.
[9] LI Yunfei, WANG Jinhe, ZHANG Long, LI Zhengkun, FU Huameng, ZHU Zhengwang, LI Hong, WANG Aimin, ZHANG Haifeng. Effect of Annealing Temperature on Microstructure and Properties of a High-entropy Alloy Fe35Ni30Cr20Al10Nb5[J]. 材料研究学报, 2024, 38(4): 241-247.
[10] TIAN Songwen, LIU Lirong, TIAN Sugui. Creep Behavior and Mechanism of a Re/Ru-containing Nickel-based Single Crystal Superalloy[J]. 材料研究学报, 2024, 38(4): 248-256.
[11] WU Houran, DUAN Tigang, MA Li, SHAO Gangqin, ZHANG Hengyu, ZHANG Haibing. Electrochemical Performance of Al-Zn-In-Mg-Ga-Mn Alloys as Anodes for Al-Air Batteries[J]. 材料研究学报, 2024, 38(4): 257-268.
[12] LIU Rui, ZHANG Dingdong, ZHANG Hui, REN Wencai, DU Jinhong. Effects of the Thickness of the Hole Transport Layer on the Performance of Graphene-based Organic Light-emitting Diodes[J]. 材料研究学报, 2024, 38(3): 168-176.
[13] QI Kaili, HU Dejiang, GAO Chong, LIU Feng, PANG Jianchao, SHAO Chenwei, YANG Mengqi, LI Shouxin, ZHANG Zhefeng. Notch Tensile Properties Prediction of Low-alloy Steel Processed by Different Tempering Temperatures[J]. 材料研究学报, 2024, 38(3): 197-207.
[14] LIU Chenye, LUO Tianjiao, LI Yingju, FENG Xiaohui, HUANG Qiuyan, ZHENG Ce, ZHU Cheng, YANG Yuansheng. Microstructure and Properties of As-cast Mg-8Zn-4Al-0.5Cu-0.5Mn-xLi Alloys with High Modulus[J]. 材料研究学报, 2024, 38(3): 187-196.
[15] YIN Yanchao, LV Yifan, LIU Qianli, XU Yali, JIANG Peng, YU Wei. Tensile Behavior and Plastic Deformation Mechanism of Ti-Al-Fe Alloy at Room Temperature and Liquid Nitrogen Temperature[J]. 材料研究学报, 2024, 38(3): 232-240.
No Suggested Reading articles found!