|
|
Effect of Aging Treatment on Microstructure Evolution and Mechanical Properties of Fe-12Mn-8Al-1C-3Cu Lightweight Steel |
LIU Jiaxiao1,2, HU Xiao1,2, DING Hua1,2( ) |
1.School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China 2.Key Laboratory of Lightweight Structural Materials, Liaoning Province, Northeastern University, Shenyang 110819, China |
|
Cite this article:
LIU Jiaxiao, HU Xiao, DING Hua. Effect of Aging Treatment on Microstructure Evolution and Mechanical Properties of Fe-12Mn-8Al-1C-3Cu Lightweight Steel. Chinese Journal of Materials Research, 2024, 38(5): 356-364.
|
Abstract By aging treatment of a medium manganese lightweight steel at 550oC, the evolution of its microstructure and mechanical properties was analyzed. The results indicate that aging treatment has a significant impact on precipitates. When the aging time is less than 30 minutes, a large number of intragranular κ'-carbides formed by spinodal decomposition, which distributed dispersedly in the austenite matrix. As the aging time increases, besides the intragranular κ'-carbides, intergranular κ-carbides are also formed at grain boundaries through eutectoid reactions as a layered structure of α ferrite and κ-carbide. Intragranular κ'-carbides greatly increase the strength, but intergranular κ-carbides significantly reduce the ductility of the steel. Compared with long-time aging, the strength of the steel can be significantly increased by short-time aging, while the steel still maintains a high elongation with better overall mechanical properties. Among them, the good performance is achieved for the steel after aging for 30 minutes, namely a tensile strength of 1031 MPa, yield strength of 784 MPa, an elongation of 41.08%, and a product of strength and elongation of 42.35 GPa·%.
|
Received: 30 May 2023
|
|
Fund: National Natural Science Foundation of China(U1760205) |
Corresponding Authors:
DING Hua, Tel: (024)23604263, E-mail: dingh@smm.neu.edu.cn
|
1 |
Zhen W Y. Explore the new opportunity and situation of the domestic auto industry after the epidemic[J]. Auto Rev., 2020, (7): 36
|
|
甄文媛. 探寻疫后国内汽车产业的新机与新局[J]. 汽车纵横, 2020, (7): 36
|
2 |
Ma M T, Yi H L, Lu H Z, et al. On the lightweighting of automobile[J]. Strategic Study CAE, 2009, 11(9): 20
|
|
马鸣图, 易红亮, 路洪洲 等. 论汽车轻量化[J]. 中国工程科学, 2009, 11(9): 20
|
3 |
Xiong P L. Research progress of lightweight automotive materials and structures[J]. Auto Time, 2020, (1): 96
|
|
熊培练. 汽车材料及结构轻量化的研究进展[J]. 时代汽车, 2020, (1): 96
|
4 |
Chen S P, Rana R, Haldar A, et al. Current state of Fe-Mn-Al-C low density steels[J]. Prog. Mater. Sci., 2017, 89: 345
|
5 |
Yang F Q, Song R B, Li Y P, et al. Tensile deformation of low density duplex Fe-Mn-Al-C steel[J]. Mater. Des., 2015, 76: 32
|
6 |
Zhang L F, Song R B, Zhao C, et al. Evolution of the microstructure and mechanical properties of an austenite-ferrite Fe-Mn-Al-C steel[J]. Mater. Sci. Eng., 2015, 643A: 183
|
7 |
Chang K M, Chao C G, Liu T F. Excellent combination of strength and ductility in an Fe-9Al-28Mn-1.8C alloy[J]. Scr. Mater., 2010, 63(2): 162
|
8 |
Lin C L, Chao C G, Juang J Y, et al. Deformation mechanisms in ultrahigh-strength and high-ductility nanostructured FeMnAlC alloy[J]. J. Alloys Compd., 2014, 586: 616
|
9 |
Gutierrez-Urrutia I, Raabe D. Influence of Al content and precipitation state on the mechanical behavior of austenitic high-Mn low-density steels[J]. Scr. Mater., 2013, 68(6): 343
|
10 |
Frommeyer G, Brüx U. Microstructures and mechanical properties of high-strength Fe-Mn-Al-C light-weight TRIPLEX steels[J]. Steel Res. Int., 2006, 77(9-10): 627
|
11 |
Bartlett L N, Van Aken D C, Medvedeva J, et al. An atom probe study of kappa carbide precipitation and the effect of silicon addition[J]. Metall. Mater. Trans., 2014, 45A(5): 2421
|
12 |
Han K H, Choo W K. Phase decomposition of rapidly solidified Fe-Mn-Al-C austenitic alloys[J]. Metall. Trans., 1989, 20A(2): 205
|
13 |
Liu S Z, Li Y, Wang C X, et al. Effects of solution treatment on microstructures and properties of Fe-Mn-Al-C low density steel[J]. Heat Treat. Met., 2015, 40(9): 120
|
|
刘少尊, 厉 勇, 王春旭 等. 固溶处理对Fe-Mn-Al-C系低密度钢组织与性能的影响[J]. 金属热处理, 2015, 40(9): 120
|
14 |
Kalashnikov I, Shalkevich A, Acselrad O, et al. Chemical composition optimization for austenitic steels of the Fe-Mn-Al-C system[J]. J. Mater. Eng. Perform., 2000, 9(6): 597
|
15 |
Welsch E, Ponge D, Haghighat S M H, et al. Strain hardening by dynamic slip band refinement in a high-Mn lightweight steel[J]. Acta Mater., 2016, 116: 188
|
16 |
Haase C, Zehnder C, Ingendahl T, et al. On the deformation behavior of κ-carbide-free and κ-carbide-containing high-Mn light-wei-ght steel[J]. Acta Mater., 2017, 122: 332
|
17 |
Yao M J, Welsch E, Ponge D, et al. Strengthening and strain hardening mechanisms in a precipitation-hardened high-Mn lightweight steel[J]. Acta Mater., 2017, 140: 258
|
18 |
Wu Z Q, Ding H, An X H, et al. Influence of Al content on the strain-hardening behavior of aged low density Fe-Mn-Al-C steels with high Al content[J]. Mater. Sci. Eng., 2015, 639A: 187
|
19 |
Banis A, Gomez A, Bliznuk V, et al. Microstructure evolution and mechanical behavior of Fe-Mn-Al-C low-density steel upon aging[J]. Mater. Sci. Eng., 2023, 875A: 145109
|
20 |
Yoo J D, Hwang S W, Park K T. Origin of extended tensile ductility of a Fe-28Mn-10Al-1C steel[J]. Metall. Mater. Trans., 2009, 40A(7): 1520
|
21 |
Welsch E, Ponge D, Haghighat S M H, et al. Strain hardening by dynamic slip band refinement in a high-Mn lightweight steel[J]. Acta Mater., 2016, 116: 188
|
22 |
Xi T, Shahzad M B, Xu D K, et al. Copper precipitation behavior and mechanical properties of Cu-bearing 316L austenitic stainless steel: a comprehensive cross-correlation study[J]. Mater. Sci. Eng., 2016, 675A: 243
|
23 |
Tan S P, Wang Z H, Cheng S C, et al. Effect of Cu content on aging precipitation behaviors of Cu-rich phase in Fe-Cr-Ni alloy[J]. J. Iron Steel Res. Int., 2010, 17(5): 63
|
24 |
Gaber A, Ali A M, Matsuda K, et al. Study of the developed precipitates in Al-0.63Mg-0.37Si-0.5Cu (wt.%) alloy by using DSC and TEM techniques[J]. J. Alloys Compd., 2007, 432(1-2): 149
|
25 |
Chen Z, Liu M X, Zhang J K, et al. Effect of annealing treatment on microstructures and properties of austenite-based Fe-28Mn-9Al-0.8C lightweight steel with addition of Cu[J]. China Foundry, 2021, 18(3): 207
doi: 10.1007/s41230-021-1026-6
|
26 |
Song H, Yoo J, Kim S H, et al. Novel ultra-high-strength Cu-containing medium-Mn duplex lightweight steels[J]. Acta Mater., 2017, 135: 215
|
27 |
Haase C, Zehnder C, Ingendahl T, et al. On the deformation behavior of κ-carbide-free and κ-carbide-containing high-Mn light-weight steel[J]. Acta Mater., 2017, 122: 332
|
28 |
Choo W K, Kim J H, Yoon J C. Microstructural change in austenitic Fe-30.0wt%Mn-7.8wt%Al-1.3wt%C initiated by spinodal decomposition and its influence on mechanical properties[J]. Acta Mater., 1997, 45(12): 4877
|
29 |
Cheng W C. Phase transformations of an Fe-0.85 C-17.9 Mn-7.1 al austenitic steel after quenching and annealing[J]. JOM, 2014, 66(9): 1809
|
30 |
Liu D G, Cai M H, Ding H, et al. Control of inter/intra-granular κ-carbides and its influence on overall mechanical properties of a Fe-11Mn-10Al-1.25C low density steel[J]. Mater. Sci. Eng., 2018, 715A: 25
|
31 |
Han D. Investigations on the microstructures-properties relationship and deformation mechanism in high strength Fe-Mn-Al-C low density steels[D]. Shenyang: Northeastern University, 2020
|
|
韩 东. Fe-Mn-Al-C低密度高强钢的组织性能及变形机制研究[D]. 沈阳: 东北大学, 2020
|
32 |
Cheng W C, Song Y S, Lin Y S, et al. On the eutectoid reaction in a quaternary Fe-C-Mn-Al alloy: austenite→ferrite + kappa-carbide + M23C6 carbide[J]. Metall. Mater. Trans., 2014, 45A(3): 1199
|
33 |
Lu W J, Zhang X F, Qin R S. κ-carbide hardening in a low-density high-Al high-Mn multiphase steel[J]. Mater. Lett., 2015, 138: 96
|
34 |
Zhang M X, Kelly P M. The morphology and formation mechanism of pearlite in steels[J]. Mater. Charact., 2009, 60(6): 545
|
35 |
Darken L S, Fisher P M. Decomposition of Austenite by Diffusional Processes[M]. New York: Intersciences Publishers, 1962: 197
|
36 |
Lee J, Park S, Kim H, et al. Simulation of κ-carbide precipitation kinetics in aged low-density Fe-Mn-Al-C steels and its effects on strengthening[J]. Met. Mater. Int., 2018, 24: 702
|
37 |
Ding H, Han D, Zhang J, et al. Tensile deformation behavior analysis of low density Fe-18Mn-10Al-xC steels[J]. Mater. Sci. Eng., 2016, 652A: 69
|
38 |
Lin C L, Chao C G, Juang J Y, et al. Deformation mechanisms in ultrahigh-strength and high-ductility nanostructured FeMnAlC alloy[J]. J. Alloys Compd., 2014, 586: 616
|
39 |
Wu Z Q. Investigations on the microstructures-properties relationship and deformation mechanism in high strength and high ductility low density steels[D]. Shenyang: Northeastern University, 2015
|
|
吴志强. 高强度高塑性低密度钢的组织性能和变形机制研究[D]. 沈阳: 东北大学, 2015
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|