Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (4): 248-256    DOI: 10.11901/1005.3093.2023.273
ARTICLES Current Issue | Archive | Adv Search |
Creep Behavior and Mechanism of a Re/Ru-containing Nickel-based Single Crystal Superalloy
TIAN Songwen1, LIU Lirong2, TIAN Sugui2()
1.Shenyang 3D-Dowell Science & Technology Co. Ltd., Shenyang 110270, China
2.Department of Materials, Shenyang University of Technology, Shenyang 110870, China
Cite this article: 

TIAN Songwen, LIU Lirong, TIAN Sugui. Creep Behavior and Mechanism of a Re/Ru-containing Nickel-based Single Crystal Superalloy. Chinese Journal of Materials Research, 2024, 38(4): 248-256.

Download:  HTML  PDF(11972KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of solution temperature and the relevant microstructure evolution on the creep behavior of a Re/Ru-containing nickel-based single crystal alloy was assessed, aiming to reveal the effect of the addition of high metlting point elements on the performance of the alloy. The results show that the residual eutectic is still persisted in the inter-dendritic region of the alloy after solution treated at 1328oC; after the residual eutectic was eliminated by solution treated at 1332oC, the creep lifetime of alloy may be enhanced from 321 h to 476 h at 1100oC/140 MPa. The γ′ phase in the alloy was changed into rafted structure in the primary period of creep. In the late creep period, although the formed dislocation locks in γ′ rafts may impede the dislocations movement to enhance the creep resistance of the alloy, the alternated gliding of dislocations causes the tortuosity of γ/γ′ rafts to form sub-grains, which in turn may reduce the strength and creep resistance of the alloy. Especially, the reversed microstructure evolution of the rafted γ′ phase transformed into the block-like configuration may accelerate the strain rate of the alloy until fracture, which is thought to be the deformed and damaged features of the alloy in the later creep period. While the cause of the creep lifetime at 1140oC being decreased to a great extent is attributed to the γ′ phase dissolved to diminish its size and volume fraction.

Key words:  metallic materials      single crystal Ni-based alloy      Re/Ru      solution temperature      creep damage      reversed evolution of microstructure     
Received:  30 May 2023     
ZTFLH:  TG132.3  
Fund: National Natural Science Foundation of China(51271125)
Corresponding Authors:  TIAN Sugui, Tel: (024)25494089, E-mail: tiansugui2003@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.273     OR     https://www.cjmr.org/EN/Y2024/V38/I4/248

AlCrCoTa + W + MoReRuNi
Nominal6.03.06.016.04.53.0Bal.
True5.832.786.0515.64.382.85
Table 1  Chemical compositions of single crystal nickel-based superalloy (mass fractio, %)
Fig.1  Selected heat treatment techniques
Fig.2  After treated by different techniques, creep properties of alloy at 1100oC/140 MPa
Fig.3  Creep curves of alloy at various temperatures under the applied stress of 140 MPa
Fig.4  After heat treated by technique 1, configuration of the residual eutectic in the alloy
Fig.5  Microstructure of the alloy after heat treated by the technique 2
Fig.6  Microstructure of alloy crept for 5 h at 1100oC/140 MPa
Fig.7  Changing features of microstructure of alloy with creeping time at 1100oC/140 MPa (a) crept for 10 h, (b) crept for 200 h, (c) crept for 400 h
Fig.8  Microstructure in various zones of sample after crept until fracture at 1100oC/140 MPa and 1140oC/140 MPa (a) region far from fracture at 1100oC, (b) region near fracture at 1100oC, (c) region far from fracture at 1140oC and (d) region near fracture at 1140oC
Fig.9  Dislocation configuration in the γ′ rafts after crept up to fracture at 1100oC /140 MPa (a) g020, (b) g02¯2, (c) g002
Fig.10  Microstructure of alloy crept for 476 h until fracture at 1100oC/140 MPa (a) sub-grains in local region, (b) block-like γ′ phase
Fig.11  Schematic diagram of inclined γ′ phase dissolved up to fusing (a) inclination of γ′ phase, (b) formation of grooves, (c) chemical potential of grooves and (d) fusing of grooves
1 Yue Q Z, Liu L, Yang W C, et al. Research progress of creep behaviors in advanced Ni-based single crystal superalloys [J]. Mater. Rep., 2019, 33(2): 479
岳全召, 刘 林, 杨文超 等. 先进镍基单晶高温合金蠕变行为的研究进展 [J]. 材料导报, 2019, 33(2): 479
2 Wilhelm F, Affeldt E, Fleischmann E, et al. Modeling of the deformation behavior of single crystalline Nickel-based superalloys under thermal mechanical loading [J]. Int. J. Fatigue, 2017, 97: 1
3 Chen J B, Chen J Y, Wang Q J, et al. Enhanced creep resistance induced by minor Ti additions to a second generation nickel-based single crystal superalloy [J]. Acta Mater., 2022, 232: 117938
4 Matuszewski K, Rettig R, Matysiak H, et al. Effect of ruthenium on the precipitation of topologically close packed phases in Ni-based superalloys of 3rd and 4th generation [J]. Acta Mater., 2015, 95: 274
5 Wu X, Wollgramm P, Somsen C, et al. Double minimum creep of single crystal Ni-base superalloys [J]. Acta Mater., 2016, 112: 242
6 Zhang M, Zhang S Q, Wang D, et al. Creep microstructure damage and influence on Re-creep behavior for a nickel-based single crystal superalloy [J]. Chin. J. Mater. Res., 2023, 37(6): 417
doi: 10.11901/1005.3093.2021.636
张 敏, 张思倩, 王 栋 等. 一种镍基单晶高温合金的蠕变组织损伤对再蠕变行为的影响 [J]. 材料研究学报, 2023, 37(6): 417
7 Lu F, Antonov S, Lu S, et al. Unveiling the Re effect on long-term coarsening behaviors of γ′ precipitates in Ni-based single crystal superalloys [J]. Acta Mater., 2022, 233: 117979
8 Kamaraj M, Serin K, Kolbe M, et al. Influence of stress state on the kinetics of γ-channel widening during high temperature and low stress creep of the single crystal superalloy CMSX-4 [J]. Mater. Sci. Eng., 2001, 319-321A: 796
9 Wang X G, Liu J L, Jin T, et al. Creep deformation related to dislocations cutting the γ′ phase of a Ni-base single crystal superalloy [J]. Mater. Sci. Eng., 2015, 626A: 406
10 Yue Q Z, Liu L, Yang W C, et al. Stress dependence of the creep behaviors and mechanisms of a third-generation Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2019, 35: 752
doi: 10.1016/j.jmst.2018.11.015
11 Wang G L, Liu J L, Liu J D, et al. Temperature dependence of tensile behavior and deformation microstructure of a Re-containing Ni-base single crystal superalloy [J]. Mater. Des., 2017, 130: 131
12 Xu K, Wang G L, Liu J D, et al. Creep behavior and a deformation mechanism based creep rate model under high temperature and low stress condition for single crystal superalloy DD5 [J]. Mater. Sci. Eng., 2020, 786A: 139414
13 Liu C, Yang W C, Cao K L, et al. New insights into the microstructural stability based on the element segregation behavior at γ/γ′ interface in Ni-based single crystal superalloys with Ru addition [J]. J. Mater. Sci. Technol., 2023, 154: 232
14 Liu G, Liu L, Zhang S X, et al. Effects of Re and Ru on microstructure and segregation of Ni-based single-crystal superalloys [J]. Acta Metall. Sin., 2012, 48(7): 845
doi: 10.3724/SP.J.1037.2012.00001
刘 刚, 刘 林, 张胜霞 等. Re和Ru对镍基单晶高温合金组织偏析的影响 [J]. 金属学报, 2012, 48(7): 845
15 Balikci E, Raman A, Mirshams R A. Influence of various heat treatments on the microstructure of polycrystalline IN738LC [J]. Metall. Mater. Trans., 1997, 28A: 1993
16 Zhao Y S, Yang Z, Chen R Z, et al. Effect of Ru on microstructure evolution of the fourth generation nickel-based single crystal superalloy DD22 during long-term aging [J]. J. Mater. Eng., 2022, 50(9): 127
doi: 10.11868/j.issn.1001-4381.2022.000105
赵云松, 杨 昭, 陈瑞志 等. Ru对第四代镍基单晶高温合金DD22长期时效组织演化的影响 [J]. 材料工程, 2022, 50(9): 127
doi: 10.11868/j.issn.1001-4381.2022.000105
17 Liu P C, Liu X G, Jiang X W, et al. Evolution of phase interface microstructure and its effects on stress rupture property of a 4th generation nickel-based single crystal superalloy after thermal exposure [J]. Mater. Sci. Eng., 2023, 865A: 144640
18 Ding Q Q, Li J X, Zhang Z. Interaction between phase boundary and interfacial dislocations in nickel based single crystalline superalloy [J]. J. Chin. Electron Microsc. Soc., 2017, 36(2): 91
丁青青, 李吉学, 张 泽. 镍基单晶高温合金相界与界面位错的相互作用 [J]. 电子显微学报, 2017, 36(2): 91
19 Tian S G, Wu J, Shu D L, et al. Influence of element Re on deformation mechanism within γ′ phase of single crystal nickel-based superalloys during creep at elevated temperatures [J]. Mater. Sci. Eng., 2014, 616A: 260
20 Yan H J, Tian S G, Dong Z F, et al. Creep behavior and damage feature of Re/Ru-containing single crystal nickel-based superalloy at high temperature [J]. Chin. J. Nonferrous Met., 2021, 31(2): 401
闫化锦, 田素贵, 董志峰 等. 含Re/Ru镍基单晶合金的高温蠕变行为和损伤特征 [J]. 中国有色金属学报, 2021, 31(2): 401
21 Chen J Y, Zhao B, Feng Q, et al. Effects of Ru and Cr on γ/γ' microstructural evolution of Ni-based single crystal superalloys during heat treatment [J]. Acta Metall. Sin., 2010, 46(8): 897
陈晶阳, 赵 宾, 冯 强 等. Ru和Cr对镍基单晶高温合金γ/γ′热处理组织演变的影响 [J]. 金属学报, 2010, 46(8): 897
doi: 10.3724/SP.J.1037.2010.00108
22 Tian S G, Ding X, Guo Z G, et al. Damage and fracture mechanism of a nickel-based single crystal superalloy during creep at moderate temperature [J]. Mater. Sci. Eng., 2014, 594A: 7
23 Li B, Zhang S M, Essa F A, et al. Crack propagation and microstructural evolution of Ni-based single crystal alloy under shear loads [J]. Rare Met. Mater. Eng., 2018, 47(5): 1370
24 Peng Z F, Yan Y H. Phase morphology evolution and anisotropic cr- eep behaviour of nickel-base single crystal superalloy CMSX-4 [J]. Acta Metall. Sin., 1997, 33(11): 1147
彭志方, 严演辉. 镍基单晶高温合金CMSX-4相形态演变及蠕变各向异性 [J]. 金属学报, 1997, 33(11): 1147
[1] LI Jing, XU Yingchao, FAN Haoshuang, LU Yi, LI Li, ZHANG Xianyu. Preparation and Luminescence Properties of a Novel Double Perovskite Ca2GdSbO6:Sm3+ Reddish-orange Phosphor[J]. 材料研究学报, 2024, 38(4): 288-296.
[2] WANG Yuzhao, JIANG Zhonghua, JIA Chunni, ZHANG Yutuo, WANG Pei. Microstructure and Mechanical Properties of an Austempered Nanostructured Bainitic Steel[J]. 材料研究学报, 2024, 38(4): 279-287.
[3] LI Yunfei, WANG Jinhe, ZHANG Long, LI Zhengkun, FU Huameng, ZHU Zhengwang, LI Hong, WANG Aimin, ZHANG Haifeng. Effect of Annealing Temperature on Microstructure and Properties of a High-entropy Alloy Fe35Ni30Cr20Al10Nb5[J]. 材料研究学报, 2024, 38(4): 241-247.
[4] WU Houran, DUAN Tigang, MA Li, SHAO Gangqin, ZHANG Hengyu, ZHANG Haibing. Electrochemical Performance of Al-Zn-In-Mg-Ga-Mn Alloys as Anodes for Al-Air Batteries[J]. 材料研究学报, 2024, 38(4): 257-268.
[5] LIU Rui, ZHANG Dingdong, ZHANG Hui, REN Wencai, DU Jinhong. Effects of the Thickness of the Hole Transport Layer on the Performance of Graphene-based Organic Light-emitting Diodes[J]. 材料研究学报, 2024, 38(3): 168-176.
[6] QI Kaili, HU Dejiang, GAO Chong, LIU Feng, PANG Jianchao, SHAO Chenwei, YANG Mengqi, LI Shouxin, ZHANG Zhefeng. Notch Tensile Properties Prediction of Low-alloy Steel Processed by Different Tempering Temperatures[J]. 材料研究学报, 2024, 38(3): 197-207.
[7] LIU Chenye, LUO Tianjiao, LI Yingju, FENG Xiaohui, HUANG Qiuyan, ZHENG Ce, ZHU Cheng, YANG Yuansheng. Microstructure and Properties of As-cast Mg-8Zn-4Al-0.5Cu-0.5Mn-xLi Alloys with High Modulus[J]. 材料研究学报, 2024, 38(3): 187-196.
[8] YIN Yanchao, LV Yifan, LIU Qianli, XU Yali, JIANG Peng, YU Wei. Tensile Behavior and Plastic Deformation Mechanism of Ti-Al-Fe Alloy at Room Temperature and Liquid Nitrogen Temperature[J]. 材料研究学报, 2024, 38(3): 232-240.
[9] ZHOU Lichen. Preparation of Fluorine Modified Titanium Dioxide Catalyst and Its Photocatalytic Degradation for Oilfield Wastewater[J]. 材料研究学报, 2024, 38(2): 141-150.
[10] ZHENG Mingrui, LI Yawei, LIU Jing, WANG Li, ZHENG Wei, DONG Jiasheng, ZHANG Jian, LOU Langhong. Effect of Notch Orientation and Temperature on Thermal Fatigue Behavior of a Third-Generation Single Crystal Superalloy DD33[J]. 材料研究学报, 2024, 38(2): 111-120.
[11] HAO Wenjun, JING Hemin, XI Tong, YANG Chunguang, YANG Ke. Effect of Austenitizing Temperature on Microstructure and Properties of High Carbon Cu-bearing Martensitic Stainless Steel[J]. 材料研究学报, 2024, 38(2): 121-129.
[12] ZENG Daoping, AN Tongbang, ZHENG Shaoxian, DAI Haiyang, CAO Zhilong, MA Chengyong. Fracture Toughness of Weld Metal of 440 MPa Grade High-strength Steel[J]. 材料研究学报, 2024, 38(2): 151-160.
[13] LIU Zhenhuan, LI Yonghan, LIU Yang, WANG Pei, LI Dianzhong. Carbide Evolution Behavior of GCr15 Bearing Steel During Aging Process[J]. 材料研究学报, 2024, 38(2): 130-140.
[14] YU Sheng, GUO Wei, LV Shulin, WU Shusen. Synthesis and Mechanical Properties of Ti-Zr-Cu-Pd-Mo Amorphous Alloy Based Composites with In-situ Autogenous β-Ti Phase[J]. 材料研究学报, 2024, 38(2): 105-110.
[15] YANG Renxian, MA Shucheng, CAI Xin, ZHENG Leigang, HU Xiaoqiang, LI Dianzhong. Influence of Cerium on Creep Properties of 316LN Austenitic Stainless Steel[J]. 材料研究学报, 2024, 38(1): 23-32.
No Suggested Reading articles found!