Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (5): 379-389    DOI: 10.11901/1005.3093.2023.238
ARTICLES Current Issue | Archive | Adv Search |
Preparation of Acid-alkali Modified Coal Fly Ash Adsorbent and Its Removal Performance on Dyes
WANG Yan1, ZHANG Hao2, CHANG Na3, WANG Haitao1()
1.School of Environmental Science and Engineering, TianGong University, Tianjin 300387, China
2.School of Textile Science and Engineering, TianGong University, Tianjin 300387, China
3.School of Chemical Engineering and Technology, TianGong University, Tianjin 300387, China
Cite this article: 

WANG Yan, ZHANG Hao, CHANG Na, WANG Haitao. Preparation of Acid-alkali Modified Coal Fly Ash Adsorbent and Its Removal Performance on Dyes. Chinese Journal of Materials Research, 2024, 38(5): 379-389.

Download:  HTML  PDF(5868KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Coal fly ash (CFA) was modified with HCl and NaOH solutions as to produce a novel modified porous adsorbent (MCFA). The CFA and MCFA were characterized by SEM、BET、FT-IR、XRD、XPS. Meanwhile, simulated wastewaters containing dyes, such as basic violet, basic green, Congo red, and methyl violet, respectively were prepared, then the effect of the MCFA dosage on the adsorption capacity for dyes, and the effect of pH value of wastewaters on adsorption capacity for dyes were examined. The characterization results showed that the surface of MCFA is rather rough and porous, with a specific surface area of 32.0 m2/g, superior to 5.2 m2/g of the original CFA, accordingly its adsorption performance may be enhanced due to the increasing active and adsorptive sites on the surface. The MCFA has excellent adsorption effect on the desired four dyes. The maximum removal efficiency of basic violet and basic green all reached 99%, respectively by using adsorbent dosage of 2 mL for a given dye solution of 100 mg/L. By fitting data with isothermal adsorption and kinetic models, it follows that Freundlich isotherm model was fitted for the adsorption process, and both physical and chemical adsorption are involved in the adsorption process. The adsorption behavior of all four dyes could be described better by pseudo-second-order kinetics rather than pseudo-first-order kinetics, and the adsorption effect was significant, which can be used as an excellent adsorbent in the treatment industry of dye wastewaters.

Key words:  inorganic non-metallic materials      modification of coal fly ash      dye wastewater      decolorization      adsorption     
Received:  23 April 2023     
ZTFLH:  O647.33  
Fund: National Key Research and Development Program of China(2023YFE0101000)
Corresponding Authors:  WANG Haitao, Tel: (022)83955622, E-mail: wanghaitao@tiangong.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.238     OR     https://www.cjmr.org/EN/Y2024/V38/I5/379

Fig.1  Preparation process of fly ash adsorption material modified by HCl-NaOH method
DyeMolecular weightStructural formulaWavelength / nm
Basic violet337.85543.88
Basic green364.92564.63
Congo red696.68495.25
Methyl violet379.93584.94
Table 1  Basic information about adsorbed dyes
Fig.2  SEM images of CFA (a, b) and MCFA (c, d)
Fig.3  Pore size distribution and nitrogen adsorption desorption curves of CFA and MCFA samples
SamplesSurface area / m2·g-1N2 quantity amount / cm3·g-1Correlation coefficient (r)Diameter / nm
CFA5.24.5270.9987003.061
MCFA32.042.38720.9999274.900
Table 2  Specific surface area and pore size parameters of CFA and MCFA
Fig.4  IR spectrum of CFA and MCFA
Fig.5  X-ray diffraction spectra of CFA and MCFA
Fig.6  XPS spectra of CFA and MCFA
Fig.7  XPS spectrum of CFA
Fig.8  XPS spectrum of MCFA
Fig.9  Adsorption properties of dyes with different doses of MCFA
Fig.10  Influence of concentrations on the adsorption effect of four dyes
ModelParametersBasic violetBasic greenCongo redMethyl violet
LangmuirKL / L·g-10.00030.00050.00260.0004
qm / mg·g-17.672715.115101.25
R20.27780.84990.96540.2911
FreundlichKF / mg·g-1512.743372.393661.602721.8424
nf0.90151.12422.66520.8997
R20.99080.99030.99020.9909
Table 3  Isothermal fitting parameters of MCFA adsorption of four dyes
Fig.11  Influence of time on adsorption effect of four dyes
ModelParametersBasic violetBasic greenCongo redMethyl violet
Pseudo-first-orderK1 / min-15.520 × 10-22.223 × 10-12.670 × 10-11.386 × 10-1
qe / mg·g-13.46971.81042.71141.4374
R20.64200.24610.95770.8848
Pseudo-second-orderK2 / g·(mg·min)-11.006 × 10-31.335 × 10-38.5902.469 × 10-4
qe / mg·g-1250.00250.00263.16256.41
R20.99990.99990.98090.9980
Table 4  Kinetic fitting parameters of adsorption of four dyes by MCFA
Fig.12  Adsorption capacity of MCFA for four dyes at pH 3~11
1 Wang J X, Li J, Zhao S B, et al. Research progress and prospect of resource utilization of fly ash in China[J]. Bull. Chin. Ceram. Soc., 2018, 37(12): 3833
王建新, 李 晶, 赵仕宝 等. 中国粉煤灰的资源化利用研究进展与前景[J]. 硅酸盐通报, 2018, 37(12): 3833
2 Xu S, Yang J L, Ma S J. Research progress in the comprehensive utilization of fly ash[J]. Conser. Utilizat. Miner. Resour., 2021, 41(3): 104
徐 硕, 杨金林, 马少健. 粉煤灰综合利用研究进展[J]. 矿产保护与利用, 2021, 41(3): 104
3 Aigbe U O, Ukhurebor K E, Onyancha R B, et al. Fly ash-based adsorbent for adsorption of heavy metals and dyes from aqueous solution: a review[J]. J. Mater. Res. Technol., 2021, 14: 2751
4 He C X, Fang H L, Jessica, et al. Research progress of printing and dyeing wastewater treatment[J]. Light Text. Ind. Technol., 2021, 50(8): 130
何晨曦, 房浩亮, 古丽加衣娜尔·巴合提 等. 印染废水处理研究进展[J]. 轻纺工业与技术, 2021, 50(8): 130
5 Buema G, Lupu N, Chiriac H, et al. Performance assessment of five adsorbents based on fly ash for removal of cadmium ions[J]. J. Mol. Liq., 2021, 333: 115932
6 Dahake R, Tiwari P, Bansiwal A. Multicycle adsorption and desorption for recovery of U(VI) from aqueous solution using oxime modified zeolite-A[J]. J. Radioanal. Nucl. Chem., 2021, 327(1): 133
7 Zhang Y N, Chen Y G, Kang W, et al. Excellent adsorption of Zn(II) using NaP zeolite adsorbent synthesized from coal fly ash via stage treatment[J]. J. Clean. Prod., 2020, 258: 120736
8 Feng P F. Progress and development of high value utilization for coal fly ash from power plant[J]. China Resour. Compreh. Util., 2020, 38(11): 100
冯培峰. 电厂粉煤灰高值化利用现状与最新进展[J]. 中国资源综合利用, 2020, 38(11): 100
9 Krishnamoorthy S, Ajala F, Mohammed S M, et al. High adsorption and high catalyst regeneration kinetics observed for Flyash-Fe3O4-Ag magnetic composite for efficient removal of industrial azo reactive dyes from aqueous solution via persulfate activation[J]. Appl. Surf. Sci., 2021, 548: 149265
10 Min X Z, Han C Y, Yang L, et al. Enhancing As(V) and As(III) adsorption performance of low alumina fly ash with ferric citrate modification: Role of FeSiO3 and monosodium citrate[J]. J. Environ. Manage., 2021, 287: 112302
11 Wang Z H, Xu L H, Su N N, et al. Preparation of amino-functionalized fly ash based tobermorite for enhanced removal of Cr(VI)[J]. Environ. Sci. Pollut. Res., 2023, 30: 54547
12 Rosa J M, Fileti A M F, Tambourgi E B, et al. Dyeing of cotton with reactive dyestuffs: the continuous reuse of textile wastewater effluent treated by Ultraviolet/Hydrogen peroxide homogeneous photocatalysis[J]. J. Clean. Prod., 2015, 90: 60
13 Sundum T, Szécsényi K M, Kaewtatip K. Preparation and characterization of thermoplastic starch composites with fly ash modified by planetary ball milling[J]. Carbohydr. Polym., 2018, 191: 198
14 Wu M, Wang X Q, Mao L X, et al. Experimental study on Cd(Ⅱ) and Cu(Ⅱ) of adsorbent prepared by mixing fly ash and domestic sludge[J]. Appl. Chem. Ind., 2023, 52: 689
吴 蒙, 王晓青, 毛礼鑫 等. 粉煤灰与生活污泥混合制备吸附剂对Cd(Ⅱ)和Cu(Ⅱ)的试验研究[J]. 应用化工, 2023, 52: 689
15 Li F H, Wu W H, Li R Y, et al. Adsorption of phosphate by acid-modified fly ash and palygorskite in aqueous solution: Experimental and modeling[J]. Appl. Clay Sci., 2016, 132-133: 343
16 Yu R T, Yang Y, Ma X, et al. The mechanism of acid modification of coal fly ash for the removal of phosphate from wastewater[J]. J. Ceram., 2017, 38(1): 82
余荣台, 杨 勇, 马 湘 等. 酸改性粉煤灰去除废水中磷酸盐的机理解析[J]. 陶瓷学报, 2017, 38(1): 82
17 Dubey S, Uma, Sujarittanonta L, et al. Application of fly ash for adsorptive removal of malachite green from aqueous solutions[J]. Desalin. Water Treat., 2015, 53(1): 91
18 Hałas P, Kołodyńska D, Płaza A, et al. Modified fly ash and zeolites as an effective adsorbent for metal ions from aqueous solution[J]. Adsorpt. Sci. Technol., 2017, 35(5-6): 519
19 Li K Q, Li B Y. Effect of modification with nitrogen functional groups on structure and adsorption performence of biomass active carbon[J]. Chin. J. Mater. Res., 2018, 32(12): 929
doi: 10.11901/1005.3093.2018.190
李坤权, 李博宇. 介孔蔗渣碳的氮官能化改性及其对Hg2+吸附的影响[J]. 材料研究学报, 2018, 32(12): 929
doi: 10.11901/1005.3093.2018.190
20 Nguyen T C, Tran T D M, Dao V B, et al. Using modified fly ash for removal of heavy metal ions from aqueous solution[J]. J. Chem., 2020, 2020: 8428473
21 Wei L D, Zhang W B, Liu M D. Study on the adsorption performance of modified fly ash on sulfides in water[J]. Yunnan Chem. Technol., 2018, 45(5): 30
魏丽丹, 张文斌, 刘美多. 改性粉煤灰对水中硫化物吸附性能研究[J]. 云南化工, 2018, 45(5): 30
22 Ebadollahzadeh H, Zabihi M. Competitive adsorption of methylene blue and Pb (II) ions on the nano-magnetic activated carbon and alumina[J]. Mater. Chem. Phys., 2020, 248: 122893
23 Cho H, Oh D, Kim K. A study on removal characteristics of heavy metals from aqueous solution by fly ash[J]. J. Hazard. Mater., 2005, 127(1-3): 187
pmid: 16125307
24 Guo X L, Wu L, Shi H S. Effects of different heavy metals on fly ash-based geopolymer[J]. Chin. J. Mater. Res., 2017, 31(6): 437
doi: 10.11901/1005.3093.2016.533
郭晓潞, 伍 亮, 施惠生. 不同重金属对粉煤灰基地聚合物的影响作用[J]. 材料研究学报, 2017, 31(6): 437
doi: 10.11901/1005.3093.2016.533
25 Álvarez-Ayuso E, Querol X, Plana F, et al. Environmental, physical and structural characterisation of geopolymer matrixes synthesised from coal (co-)combustion fly ashes[J]. J. Hazard. Mater., 2008, 154(1-3): 175
26 Wang N N, Zhao Q, Xu H, et al. Adsorptive treatment of coking wastewater using raw coal fly ash: Adsorption kinetic, thermodynamics and regeneration by Fenton process[J]. Chemosphere, 2018, 210: 624
doi: S0045-6535(18)31331-6 pmid: 30031346
27 Bai L, Xu W. Study on technology and adsorption properties of modified fly ash by microwave chemical method[J]. Chem. Enterp. Manage., 2022, (36): 152
白 林, 许 玮. 微波化学法改性粉煤灰的工艺及吸附性能研究[J]. 化工管理, 2022, (36): 152
28 Chen B, Long F X, Chen S J, et al. Magnetic chitosan biopolymer as a versatile adsorbent for simultaneous and synergistic removal of different sorts of dyestuffs from simulated wastewater[J]. Chem. Eng. J., 2020, 385: 123926
29 Huang X R, Zhao H H, Zhang G B, et al. Potential of removing Cd(II) and Pb(II) from contaminated water using a newly modified fly ash[J]. Chemosphere, 2020, 242: 125148
30 Chen M, Liu J B, Kitiphatpiboon N, et al. Zn-VOx-Co nanosheets with amorphous/crystalline heterostructure for highly efficient hydrogen evolution reaction[J]. Chem. Eng. J., 2022, 432: 134329
31 Wang T T, Zhou W, Jin Z N, et al. Study on fly ash as catalyst carrier[J]. Shanxi Chem. Ind., 2022, 42(2): 19
王涛涛, 周 文, 金震楠 等. 以粉煤灰作为催化剂载体的研究[J]. 山西化工, 2022, 42(2): 19
32 Xie J Y, Zhao S X, Chen Z L, et al. Research progress on preparation of adsorbent based on fly ash and its application in the removal of heavy metals in water[J]. Environ. Sci. Technol., 2023, 46(suppl.1): 116
谢静怡, 赵晟锌, 陈忠林 等. 粉煤灰基吸附剂去除水中重金属的研究进展[J]. 环境科学与技术, 2023, 46(增刊1): 116
33 Bhatt A, Priyadarshini S, Mohanakrishnan A A, et al. Physical, chemical, and geotechnical properties of coal fly ash: A global review[J]. Case Stud. Constr. Mater., 2019, 11: e00263
34 Shang Z B, Zhang L W, Zhao X Y, et al. Removal of Pb(II), Cd(II) and Hg(II) from aqueous solution by mercapto-modified coal gangue[J]. J. Environ. Manage., 2019, 231: 391
doi: S0301-4797(18)31206-4 pmid: 30368148
35 Supelano G I, Cuaspud J A G, Moreno-Aldana L C, et al. Synthesis of magnetic zeolites from recycled fly ash for adsorption of methylene blue[J]. Fuel, 2020, 263: 116800
36 Hong M, Yu L Y, Wang Y D, et al. Heavy metal adsorption with zeolites: The role of hierarchical pore architecture[J]. Chem. Eng. J., 2019, 359: 363
doi: 10.1016/j.cej.2018.11.087
37 Chakraborty S, Mukherjee A, Das S, et al. Study on isotherm, kinetics, and thermodynamics of adsorption of crystal violet dye by calcium oxide modified fly ash[J]. Environ. Eng. Res., 2021, 26(1): 190372
[1] TAN Yiling, LI Shichun, SUN Jie. Preparation of Metal-organic Framework Porous Glass agSALEM-2[J]. 材料研究学报, 2024, 38(5): 373-378.
[2] XU Hui, ZHANG Peiyuan, XU Nana, LIU Tao, ZHANG Xiaoshan, WANG Bing, WANG Yingde. Mechanical Property and Thermal Insulation Performance of SiO2/ZrO2 Nanofiber Membranes with High Thermal Stability[J]. 材料研究学报, 2024, 38(5): 365-372.
[3] LI Jing, XU Yingchao, FAN Haoshuang, LU Yi, LI Li, ZHANG Xianyu. Preparation and Luminescence Properties of a Novel Double Perovskite Ca2GdSbO6:Sm3+ Reddish-orange Phosphor[J]. 材料研究学报, 2024, 38(4): 288-296.
[4] LIU Rui, ZHANG Dingdong, ZHANG Hui, REN Wencai, DU Jinhong. Effects of the Thickness of the Hole Transport Layer on the Performance of Graphene-based Organic Light-emitting Diodes[J]. 材料研究学报, 2024, 38(3): 168-176.
[5] ZHOU Lichen. Preparation of Fluorine Modified Titanium Dioxide Catalyst and Its Photocatalytic Degradation for Oilfield Wastewater[J]. 材料研究学报, 2024, 38(2): 141-150.
[6] WENG Xin, LI Qiqi, YANG Guifang, LV Yuancai, LIU Yifan, LIU Minghua. Preparation of Adsorbent Fe-loaded Cellulose/Tannin and Its Adsorption Characteristics for Fluoroquinolones Antibiotics[J]. 材料研究学报, 2024, 38(2): 92-104.
[7] LI Bosen, LIAO Zhongxin, GAO Daqiang. Effect of BNZ Component on Structure and Property of KNN Based Lead-free Piezoelectric Ceramics[J]. 材料研究学报, 2024, 38(1): 51-60.
[8] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[9] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[10] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[11] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[12] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[13] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[14] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[15] WANG Sheng, ZHOU Qiaoting, ZHAN Huimin, CHEN Jingjing. Atomic Analysis of Contact-induced Subsurface Damage Behavior of Single Crystal SiC Based on Molecular Simulation[J]. 材料研究学报, 2023, 37(12): 943-951.
No Suggested Reading articles found!