|
|
Preparation of SnO2@Ti3C2Tx and Its Application in Lithium Ion Battery as Anode Material |
LI Lingfang1( ), YUAN Zhipeng2, FAN Changling2 |
1.College of Mechanical Engineering, Hunan University of Arts and Science, Changde 415000, China 2.College of Materials Science and Engineering, Hunan University, Changsha 410082, China |
|
Cite this article:
LI Lingfang, YUAN Zhipeng, FAN Changling. Preparation of SnO2@Ti3C2Tx and Its Application in Lithium Ion Battery as Anode Material. Chinese Journal of Materials Research, 2022, 36(8): 602-608.
|
Abstract SnO2 nanopoints were in-situ grown on and between Ti3C2Tx layers, and the nanostructured SnO2@Ti3C2Tx composites were prepared by ultrasonic adsorption and low temperature heat treatment. SnO2@Ti3C2Tx composites were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (HRTEM). Results show that SnO2 nanoparticles are densely distributed between the layers of Ti3C2Tx. Ti3C2Txowns outstanding limiting effect and graphite-like structure, it inhibits the volume expansion and agglomeration of SnO2 and accelerates the transition of lithium ions and electrons. In addition, SnO2 is embedded between the layers to improve the longitudinal structural stability of Ti3C2Tx by preventing the restacking. Therefore, SnO2@Ti3C2Tx shows a synergistic effect between the two components and has good rate and cycle performance as anode of LIBs.
|
Received: 13 August 2021
|
|
Fund: National Natural Science Foundation of China(51802096);Natural Science Foundation of Hunan Province(2020JJ4449);Key Project of Hunan Provincial Education Department(20A346) |
About author: LI Lingfang, Tel: 13875010806, E-mail: yourvicky@126.com
|
1 |
Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2 [J]. Adv. Mater. 2011, 23(37): 4248
doi: 10.1002/adma.201102306
|
2 |
Lu M, Han W, Li H, et al. Tent-pitching-inspired high-valence period 3-cation pre-intercalation excels for anode of 2D titanium carbide (MXene) with high Li storage capacity [J]. Energy Stor. Mater., 2019, 16: 163
|
3 |
Li K, Liang M Y, Wang H, et al. 3D mxene architectures for efficient energy storage and conversion [J]. Adv. Func. Mate., 2020, 30: 2000842
|
4 |
Ma Z, Zhou X, Deng W, et al. 3D Porous MXene (Ti3C2)/reduced graphene oxide hybrid films for advanced lithium storage [J]. ACS Appl. Mater. Inter., 2018, 10 (4): 3634
doi: 10.1021/acsami.7b17386
|
5 |
Yang Z X, Wu Q, Ren Y Q, et al. Massive preparation and supercapacitor performance of layered Ti3C2 [J]. Chinese J. Mater. Res., 2020, 34(11): 861
|
|
杨占鑫, 吴 琼, 任奕桥. 宏量制备层状Ti3C2及其超级电容的性能 [J]. 材料研究学报. 2020, 34(11): 861
doi: 10.11901/1005.3093.2020.167
|
6 |
Alhabeb M, Maleski K, Anasori B, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene) [J]. Chem. Mater., 2017, 29(18): 7633
doi: 10.1021/acs.chemmater.7b02847
|
7 |
Wang H, Wu Y, Yuan X, et al. Clay-inspired mxene-based electrochemical devices and photo-electrocatalyst: state-of-the-art progresses and challenges [J]. Adv. Mater., 2018, 30(12): 1704561
doi: 10.1002/adma.201704561
|
8 |
Lai S, Jeon J, Jang S K, et al. Surface group modification and carrier transport properties of layered transition metal carbides (Ti2CT x, T: -OH, -F and -O) [J]. Nanoscale. 2015, 7(46): 19390
doi: 10.1039/C5NR06513E
|
9 |
Shen C J, Wang L B, Zhang Heng, et al. Progress in electrochemical application of two-dimensional crystal materials MXene [J]. Mater. Review. 2016(30): 148
|
|
申长洁, 王李波, 张 恒 等. 二维晶体材料MXene的电化学应用研究进展 [J]. 材料导报, 2016, (30): 148
|
10 |
Wu Y, Ping N, Wu L, et al. 2D MXene/SnS2 composites as high-performance anodes for sodium ion batteries[J]. Chem. Eng. J., 2018, 334: 932
doi: 10.1016/j.cej.2017.10.007
|
11 |
Aslam M K, Algarni T S, Javed M S, et al. 2D MXene materials for sodium ion batteries: a review on energy storage [J]. J. Ener. Stor., 2021, 37: 102478
|
12 |
Nan J, Guo X, Xiao J, et al. Nanoengineering of 2D MXene-based materials for energy storage applications [J]. Small, 2019, 17(9): 1902085
doi: 10.1002/smll.201902085
|
13 |
Yuan W, Kai Y, Peng H, et al. A flexible VOCs sensor based on 3D Mxene framework with high sensing performance [J]. J. Mater. Chem. A, 2018, 6(37): 18116
doi: 10.1039/C8TA06928J
|
14 |
Xu Z, Zhang Z, Zhen Z. MXene-based materials for electrochemical energy storage [J]. J. Ener. Chem., 2018, 27(1): 73
|
15 |
Ma Z, Zhou X, Deng W, et al. 3D Porous MXene (Ti3C2)/reduced graphene oxide hybrid films for advanced lithium storage [J]. ACS Appl. Mater. Inter., 2018, 10(4): 3634
doi: 10.1021/acsami.7b17386
|
16 |
Tian Y, Yang C, Que W, et al. Ni foam supported quasi-core-shell structure of ultrathin Ti3C2 nanosheets through electrostatic layer-by-layer self-assembly as high rate-performance electrodes of supercapacitors [J]. J. Power Sources, 2017, 369(30): 78
doi: 10.1016/j.jpowsour.2017.09.085
|
17 |
Li L F, Yuan Z P, Fan R Z, et al. Low-temperature synthesis of pyrolytic-PVDF-coated SnO2@hard carbon nanocomposite anodes for Li-ion batteries [J]. J. Mater. Sci. Mater. Electron., 2020, 31: 6449
doi: 10.1007/s10854-020-03200-5
|
18 |
Li L F, Zeng B, Yuan Z P, et al. One step hydrothermal preparation of SnO2@c composite and it's lithium storage performance [J]. Chinese J. Mater. Res. Research., 2020, 8: 591
|
|
李玲芳, 曾 斌, 原志朋 等. 一步水热法制备纳米SnO2@C复合材料及其储锂性能研究 [J]. 材料研究学报, 2020, 8: 591
|
19 |
Chae Y, Kim S J, Cho S Y, et al. An investigation into the factors governing the oxidation of two-dimensional Ti3C2 MXene [J]. Nanoscale, 2019, 11: 8387
doi: 10.1039/C9NR00084D
|
20 |
Lotfi R, Naguib M, Yilmaz D E, et al. A comparative study on the oxidation of two-dimensional Ti3C2 MXene structures in different environments [J]. J. Mater. Chem. A, 2018, 6: 12733
doi: 10.1039/C8TA01468J
|
21 |
Halim J, Cook K M, Naguib M, et al. X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes) [J]. Appl. Surf. Sci., 2016, 362: 406
doi: 10.1016/j.apsusc.2015.11.089
|
22 |
Tian Q H, Zhang F, Zhang W, et al. Non-smooth carbon coating porous SnO2 quasi- nanocubes towards high lithium storage [J]. Electrochim. Acta, 2019, 307: 393
doi: 10.1016/j.electacta.2019.04.004
|
23 |
Vo V., Nguyen X. T., Jin Y. S., et al. Duong, SnO2, nanosheets/g-C3N4, composite with improved lithium storage capabilities [J]. Chem. Phys. Lett., 2017, 674: 42
doi: 10.1016/j.cplett.2017.02.057
|
24 |
Zuo D Q, Song S C, An C S, et al. ynthesis of sandwich-like structured Sn/SnOx@MXene composite through in-situ growth for highly reversible lithium storage [J]. Nano Energy, 2019, 62: 401
doi: 10.1016/j.nanoen.2019.05.062
|
25 |
Yu X, Dall'Agnese Y, Naguib M, et al. Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries [J]. ACS Nano, 2014, 8(9): 9606
doi: 10.1021/nn503921j
|
26 |
Ghidiu M, Halim J, Kota S, et al. Ion-exchange and cation solvation reactions in Ti3C2 MXene [J]. Chem. Mater., 2016, 28(10): 3507
doi: 10.1021/acs.chemmater.6b01275
|
27 |
Zhang L, Zhang G, Wu H B, et al. Hierarchical tubular structures constructed by carbon-coated SnO2 nanoplates for highly reversible lithium storage [J]. Adv. Mater., 2013, 25: 2589
doi: 10.1002/adma.201300105
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|