Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (4): 261-270    DOI: 10.11901/1005.3093.2021.236
ARTICLES Current Issue | Archive | Adv Search |
Effects of Trace Ce on Mechanical Properties of a Ferritic/Martensitic Heat Resistant Steel Containing High Cr and Co
WANG Kun1,2, YANG Renxian1,2, Cai Xin1, ZHENG Leigang1(), HU Xiaoqiang1,2(), LI Dianzhong1,2
1.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Cite this article: 

WANG Kun, YANG Renxian, Cai Xin, ZHENG Leigang, HU Xiaoqiang, LI Dianzhong. Effects of Trace Ce on Mechanical Properties of a Ferritic/Martensitic Heat Resistant Steel Containing High Cr and Co. Chinese Journal of Materials Research, 2022, 36(4): 261-270.

Download:  HTML  PDF(14110KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

High Co and Cr containing martensitic heat resisting steels of X20Co without and with trace Ce addition were heat treated under different conditions, then the effect of trace Ce on the microstructure and mechanical properties of the steels were investigated by means of optical microscope, scanning electron microscope, X-ray diffractometer and tensile tester. The results show that in the quenching process, the addition of 50×10-6 Ce can promote the precipitation of M6C type carbides along the grain, therewith hinder the grain boundary migration, and make the refinement of austenite grains; As a consequence, the accumulation and growth of M23C6 type carbides along grain boundaries can be inhibited during tempering process. At the same time, the addition of 50×10-6 Ce has no significant effect on the hardness, strength and high temperature instantaneous tensile strength, but the toughness and plasticity at room temperature as well as the high temperature plasticity are significantly improved for the high Co and Cr containing martensitic steel X20Co.

Key words:  metallic materials      rare earth      heat resistant steel      microstructure      toughness and plasticity     
Received:  15 April 2021     
ZTFLH:  TG142.1  
Fund: National Natural Science Foundation of China(51871212);National Key Research and Development Program of China(2020YFB2006800);Youth Innovation Promotion Association of the Chinese Academy of Sciences(2017237);K.C.Wong Education Foundation, Strategic Priority Research Program of the Chinese Academy of Sciences(XDC04000000);Major Scientific and Technological Projects of Jiangxi Province(20194ABC28011)
About author:  ZHENG Leigang, Tel: (024)23970106, E-mail: lgzheng@imr.ac.cn
HU Xiaoqiang, Tel: (024)23971127, E-mail: xqhu@imr.ac.cn;

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.236     OR     https://www.cjmr.org/EN/Y2022/V36/I4/261

SteelCSiMnPSCrCoMoWVNbCeO
X20Co0.260.210.57≤0.005≤0.0019.7910.043.045.900.210.06-0.0010
X20CoRE0.260.210.22≤0.005≤.0029.8810.063.065.930.220.070.0050.0008
Table 1  Chemical composition of the experimental X20Co and X20CoRE steels (mass fraction, %)
Fig.1  SEM morphology of X20Co (a, c, e) and X20CoRE (b, d, f) heat resistant steels quenched at 1050℃ (a, b), 1130℃ (c,d) and 1200℃ (e, f). (The EDS spectra in Fig.1 a and b showing that the precipitates in the studied steels are rich in W and Mo)
Fig.2  XRD spectra of X20Co (a) and X20CoRE (b) heat resistant steels quenched at different temperatures
Fig.3  Average grain size of X20Co and X20CoRE heat resistant steels quenched at different temperatures
Fig.4  Microstructure of X20Co (a, c, e) and X20CoRE (b, d, f) heat resistant steels quenched at 1130℃ and tempered at 530℃ (a, b), 630℃ (c, d) and 680℃ (e, f)
PhaseFeCrCoWMoC
Alloy matrix of X20Co67.1110.619.874.022.694.79
Alloy matrix of X20CoRE67.2010.409.865.503.083.96
Bulk precipitates in X20Co30.018.224.3035.4114.267.11
Bulk precipitates in X20CoRE32.728.194.9133.1512.717.83
Dispersed precipitates in X20Co53.169.827.5916.256.866.02
Dispersed precipitates in X20CoRE52.0410.477.4115.006.736.66
Table 2  Relative chemical compositions analyzed by SEM-EDS of the typical precipitates and matrix in X20Co and X20CoRE heat resistant steels (mass fraction, %)
Fig.5  XRD spectra of X20Co (a) and X20CoRE (b) heat resistant steels quenched at 1130℃ and tempered at different temperatures
Fig.6  Tensile strength (a), yield strength (b), elongation (c) and impact energy (d) tested at room temperature of the X20Co and X20CoRE steels tempered at different temperatures
Fig.7  Tensile properties at different temperatures of X20Co and X20CoRE heat resistant steels quenched at 1130℃ and tempered at 680℃
Fig.8  Mass fraction of the precipitates as a function of temperature in X20Co heat resistant steel
Fig.9  Tensile fracture morphologies of X20Co (a, c, e) and X20CoRE (b, d, f) heat resistant steels tested at 550℃ (a, b), 650℃ (c, d), and 700℃ (e, f). (The EDS spectra in Fig.1b showing that the inclusions at the fracture dimples in X20CoRE steels are cerium sulfide)
1 Yan P, Liu Z D, Bao H S, Weng Y Q, Liu W. Effect of microstructural evolution on high-temperature strength of 9Cr-3W-3Co martensitic heat resistant steel under different aging conditions [J]. Mater. Sci. Eng., 2013, 588: 22
doi: 10.1016/j.msea.2013.09.033
2 Guo C B, Long S Y, Liao H M. Research of high chromium and cobalt refractory steel [J]. Mater. Rep., 2008: 22: 423
郭存宝, 龙思远, 廖慧敏. 高铬高钴耐热钢的研究 [J]. 材料导报, 2008: 22: 423
3 Qiu Q Z. Study on a high cobalt and chromium containing die steel for the magnesium alloy die casting [D]. Guangzhou: South China University of Technology, 2007: 10
邱庆忠. 一种高钴高铬压铸镁合金用模具钢的研究 [D]. 广州: 华南理工大学, 2007: 10
4 Huang X Q, Li P J, Liu S X, Cao D B, Peng C. The wear mechanism of the chamber and plunger materials of hot chamber die casting machine for magnesium alloy [J]. Foundry, 2001, 50: 187
黄相全, 李培杰, 刘树勋, 曹大本, 彭 程. 镁合金热室压铸机压射室材料摩擦磨损机制研究 [J]. 铸造, 2001, 50: 187
5 Hu X Q, Xiao N M, Luo X H, Li D Z. Transformation Behavior of Precipitates in a W-alloyed 10 wt pct Cr Steel for Ultra-supercritical Power Plants [J]. J. Mater. Sci. Technol., 2010, 26: 817
6 Li S Z, Eliniyaz Z, Dong X P, Shen Y Z, Zhang L T, Shan A D. Effect of stress on microstructural evolution and mechanical properties of 12Cr3W3Co steel during aging and short-term creep [J]. Mater. Sci. Eng., 2013, 580: 51
doi: 10.1016/j.msea.2013.05.030
7 Xue S, Yang T, Guo R D, Deng A L, Liu X D, Zheng L X. Crack analysis of Cr-Mo-V-Si medium-carbon alloy steel in casting die [J]. Eng. Fail. Anal., 2021, 120: 105083
doi: 10.1016/j.engfailanal.2020.105083
8 Du N Y, Liu H W, Fu P X, Liu H H, Sun C, Cao Y F, Li, DZ. Microstructural stability and softening resistance of a novel hot-work die Steel [J]. Crystals, 2020, 10: 239
doi: 10.3390/cryst10040239
9 Chen P F. A review on the behavior of the addition of rare-earth in steel [J]. Acta Metall. Sin., 1978, 14: 188
陈佩芳. 稀土金属在钢中的应用 [J]. 金属学报, 1978, 14: 188
10 Du T. Physical-chemistry effect of rare earth elements on metallic materials [J]. Acta Metall. Sin., 1997, 33: 69
杜 挺. 稀土元素在金属材料中的一些物理化学作用[J]. 金属学报, 1997, 33: 69
11 Pan F, Zhang J, Chen H L, et al. Effects of rare earth metals on steel microstructures [J]. Materials, 2016, 9: 417
doi: 10.3390/ma9060417
12 Xiong H H, Zhang H N. First-principles investigation on partitioning behavior of rare earth elements between alpha-Fe and Fe3C [J]. Acta Phys. Sin., 2016, 65: 248101
doi: 10.7498/aps.65.248101
熊辉辉, 张慧宁. 稀土元素在α-Fe和Fe3C中分配行为的第一性原理研究[J]. 物理学报, 2016, 65: 248101
13 Lan J, He J, Ding W, Wang Q, Zhu Y. Effect of rare earth metals on the microstructure and impact toughness of a cast 0.4C-5Cr-1.2Mo-1.0V Steel [J]. ISIJ Int., 2000, 40: 1275
doi: 10.2355/isijinternational.40.1275
14 Hamidzadeh M A, Meratian M, Saatchi A. Effect of cerium and lanthanum on the microstructure and mechanical properties of AISI D2 tool steel [J]. Mater. Sci. Eng. A, 2013, 571: 193
15 You Y, Yan J H, Yan M F, Zhang C S, Chen H T, Wang Y X, Zhang Y X, Wang C H. La interactions with C and N in bcc Fe from first principles [J]. J. Alloys Compd., 2016, 688: 261
doi: 10.1016/j.jallcom.2016.07.015
16 Nunes F C, Dille J, Delplancke J L, Almeida L H. Yttrium addition to heat-resistant cast stainless steel [J]. Scripta Mater., 2006, 54: 1553
doi: 10.1016/j.scriptamat.2006.01.024
17 Chen R C, Wang Z G, He J G, Zhu F S, Li C H. Effects of Rare Earth Elements on Microstructure and Mechanical Properties of H13 Die Steel [J]. Metals, 2020, 10: 918
doi: 10.3390/met10070918
18 Xu Y W, Song S H, Wang J W. Effect of rare earth cerium on the creep properties of modifified 9Cr-1Mo heat-resistant steel [J]. Mater. Lett., 2015, 161: 616
doi: 10.1016/j.matlet.2015.09.051
19 Hu X Q, Wang K, Zheng L G, Li D Z. A high chromium and cobalt containing rare-earth heat resistant steel and its preparation method [P]. China, 202011269899.9, 2020-11-13
胡小强, 王琨, 郑雷刚, 李殿中. 一种高Cr-高Co型稀土耐热钢合金材料及其制备方法 [P]. 中国, 202011269899.9, 2020-11-13
20 Rios P R, Siciliano F J, Sandim H RZ, Plaut R L, Padilha A F. Nucleation and growth during recrystallization [J]. Mater. Res. 2005, 8: 225
doi: 10.1590/S1516-14392005000300002
21 Chen L, Ma X, Wang L, et al. Effect of rare earth element yttrium addition on microstructures and properties of a 21Cr-11Ni austenitic heat-resistant stainless steel [J]. Mater. Des., 2011, 32: 2206
doi: 10.1016/j.matdes.2010.11.022
22 Boccalini M, Correa A V O, Goldenstein H. Rare earth metal induced modifification of γ-M2C, γ-M6C, and γ-MC eutectics in as cast M2 high speed steel [J]. J. Mater. Sci. Technol., 1999, 15: 621
doi: 10.1179/026708399101506355
23 Hufenbach J, Helth A, Lee M H, Wendrock H, Giebeler L, Choe C Y, Kim K H, Kühn U, Kim T S, Eckert J. Effect of cerium addition on microstructure and mechanical properties of high-strength Fe85Cr4Mo8V2C1 cast steel [J]. Mater. Sci. Eng. A, 2016, 674: 366
24 Knutsen R D, Lang C I, Basson J A. Discontinuous cellular precipitation in a Cr-Mn-N steel with niobium and vanadium additions [J] Acta Mater., 2004, 52: 2407
doi: 10.1016/j.actamat.2004.01.031
25 Voice W E, Faulkner R G. The discontinuous precipitation of M23C6 in Nimonic 80A [J]. J. Mater. Sci., 1987, 22: 4221
doi: 10.1007/BF01132012
26 Yi Y L, Liang Y L, Tan Q B. Bainite isothermal transformation of Si-Mn-Mo alloy by phase structure factor calculation under different rare earth contents [J], Rare Metals, 2014, 33: 427
doi: 10.1007/s12598-014-0325-0
27 Liang Y L, Yi Y L, Long S L, Tan QB. Effect of rare earth elements on isothermal transformation kinetics in Si-Mn-Mo bainite steels [J]. J. Mater. Eng. Perform., 2014, 23: 4251
doi: 10.1007/s11665-014-1181-7
28 Torkamani H, Raygan S, Garcia-Mateo C, Rassizadehghani J, Palizdar Y, San-Martin D. Evolution of pearlite microstructure in low-carbon cast microalloyed steel due to the addition of La and Ce [J]. Metall. Mater. Trans. A, 2018, 49: 4495
29 Wang H Y, Gao X Y, Ren H P, Chen S M, Yao Z F. Diffusion coeffificients of rare earth elements in fcc Fe: A first-principles study [J]. J. Phys. Chem. Solids., 2018, 112: 153
doi: 10.1016/j.jpcs.2017.09.025
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!