Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (4): 271-277    DOI: 10.11901/1005.3093.2021.188
ARTICLES Current Issue | Archive | Adv Search |
Effect of Inorganic Fillers on High Temperature Oxidation Resistance of Nano-Al/Al2O3 Modified Organic Silicone Coatings
CHEN Zheng1, YANG Fang1, WANG Cheng2,3(), DU Yao2, LU Yiliang2, ZHU Shenglong2,4,5, WANG Fuhui4,5
1.Liaoning Technical University, College of Materials Science & Engineering, Fuxin 123000, China
2.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.Jiangsu JITRI Road Engineering Technology and Equipment Research Institute Co. Ltd., Xuzhou 220005, China
4.School of Materials Science and Engineering, Northeastern University, Shenyang 110189, China
5.Shenyang National Laboratory for Materials Science, Shenyang 110016, China
Cite this article: 

CHEN Zheng, YANG Fang, WANG Cheng, DU Yao, LU Yiliang, ZHU Shenglong, WANG Fuhui. Effect of Inorganic Fillers on High Temperature Oxidation Resistance of Nano-Al/Al2O3 Modified Organic Silicone Coatings. Chinese Journal of Materials Research, 2022, 36(4): 271-277.

Download:  HTML  PDF(7725KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Paints based on nano Al/Al2O3 modified silicone resin coupled with fillers of various amounts of inorganic powders i.e., nano-ZrO2, sub-micro-SiC and micro-glass of softening point 450℃, were prepared and applied on 304 stainless steels. Then the oxidation test of the coated steels was carried out in air at 600℃ for 1000 h in order to reveal the effect of the fillers on the oxidation resistance of nano Al/Al2O3 modified silicone resin paints. Results show that all the test paints exhibited excellent oxidation resistance, while no spallation of the paints and little oxidation of the substrate beneath the paints were observed after oxidation test. It is worth noting that few micropore was observed in the tested paints coupled with 7% ZrO2, 7% SiC and 3% glass (in mass fraction), but there exist obvious micropores in the other two paints coupled with 7% glass. Moreover, the mass gain of the former was only about 60% of those of the latter two. Therefore, it is reasonable to conclude that by coupling with lower mass fraction of glass powder, the formation of micropores in the paints may be inhibited, as a result, the oxidation resistance of the paints can further be enhanced.

Key words:  failure and protection of materials      anti-high temperature oxidation      nano filler      organosilicon      304 stainless steel     
Received:  18 March 2021     
ZTFLH:  TG174  
Fund: National Key Research and Development Program of China(2018YFB2003601)
About author:  WANG Cheng, Tel: (024)23904856, E-mail: wangcheng@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.188     OR     https://www.cjmr.org/EN/Y2022/V36/I4/271

ElementCSiMnPSCrNiFe
Content0.060.871.240.010.00218.008.01Bal.
Table 1  Chemical composition of 304 stainless steel (%, mass fraction)
SamplePRPORn-Aln-ZrO2GlassSiCn-Al2O3
1#2149103773
2#2149107373
3#2149107733
Table 2  Compositions of nano- Al/Al2O3 particle modified silicone paints (%, mass fraction)
Fig.1  Oxidation kinetic curve of 304 stainless steel and coating at 600℃ (a) kinetic curve of 1000 h oxidation of 304SS; (b) 1000 h oxidation kinetics curves of 1#, 2#, and 3# coatings at 0 min; (c) 1000 h oxidation kinetics curves of 1#,2# and 3# coatings with 5 min as the zero point
Fig.2  XRD patterns of 304SS, 1#, 2#, and 3# coating after oxidation for 1000 h at 600℃
Fig.3  Back scatter electron images of surface (a, b) and cross-section (c) of 304SS after oxidation for 1000 h at 600℃
Fig.4  Back scatter electron images of surface and cross-section of 1# (a, b, c), 2# (d, e, f), 3# (g, h, i) as-prepared samples
Fig.5  Back scatter electron images of surface and cross-section of 1# (a, b), 2# (c, d) and 3# (e, f) coatings after oxidation for 5 min at 600℃
Fig.6  Back scatter electron images of surface and cross-section of 1# (a, b), 2# (c, d), 3# (e, f) after oxidation for 1000 h at 600℃
1 Du Y, Wang C, Zhu S L, et al. High temperature oxidation and electrochemical corrosion behavior of al nano-particle modified silicone coating on 304 stainless steel [J]. Chinese Journal of Materials Research, 2019, 33(12):942
杜 瑶, 王 成, 朱圣龙 等. 304不锈钢表面纳米铝改性有机硅涂层的高温氧化和电化学行为 [J]. 材料研究学报, 2019, 33(12): 942
2 Sun R G, Dai Y H, Liu S F, et al. Silicone polymer heat and water resistant coating [J]. Paint & Coatings Industry, 1995, 2: 1
孙荣贵, 戴英华, 刘胜峰. 硅聚合物耐热耐水涂料 [J]. 涂料工业, 1995, 2:1
3 Gao N. Special Coatings [M]. Shanghai: Shanghai Scientific & Technical Publishers, 1986: 168
高 南. 特种涂料 [M]. 上海: 上海科学技术出版社, 1986: 168
4 Xia C D, Wu X J, Xu Y L, et al. Study of a heat-resistant coating polymerizing organic-silica resin together with epoxy resin of the curing on the common temperature [J]. Chemistry & Bioengineering, 2002, 19(6): 17
夏赤丹, 吴学军, 徐云丽 等. 常温固化环氧有机硅共缩聚树脂耐高温涂料的研究 [J]. 化学与生物工程, 2002, 19(6): 17
5 Mo L X, Yang K, Fang Q, et al. Study and preparation of organosilicon-modified polyester resins heat-resistant coatings [J]. China Coatings, 2017, 32(5): 67
莫立新, 杨 凯, 方 倩 等. 有机硅改性聚酯树脂耐温涂料的研制 [J]. 中国涂料, 2017, 32(5): 67
6 Wang J, Sun Y J, Yin X X, et al. Development of organosilicon high temperature resistant coating [J]. Modern Paint & Finishing, 2007, 10(9): 22
王 军, 孙友军, 殷宪霞 等. 有机硅耐高温涂料的研制 [J]. 现代涂料与涂装, 2007, 10(9): 22
7 Zou M, Wang D, Zhao L, et al. Room-temperature curing high-temperature (400℃) resistant coatings prepared by organic silicone and polysilazane [J]. Surface Technology, 2018, 47(5): 83
邹 铭, 王 丹, 赵 莉 等. 常温固化耐高温400℃的有机硅-聚硅氮烷涂料 [J]. 表面技术, 2018, 47(5): 83
8 Liu H Y, Zhang S. Development of organosilicon high temperature resistant coating [J]. Silicone Material, 2008(6): 369
刘宏宇, 张 松. 有机硅耐高温涂料的研制 [J]. 有机硅材料, 2008(6): 369
9 Bai H Y, Jia M Q, Wu W, et al. In-situ modification of nm SiO2 and its application in the heat-resisting coating [J]. Surface Technology, 2003(6): 59
白红英, 贾梦秋, 毋 伟 等. 纳米SiO2的原位改性及在耐热涂料中的应用 [J]. 表面技术, 2003(6): 59
10 Guo Z B, Liu J M, Fan H L, et al. Effect of pigments and fillers on comprehensive properties of epoxy modified organosilicon high temperature resistant coatings [J]. Modern Paint & Finishing, 2007, 10(3): 13
郭中宝, 刘杰民, 范慧俐 等. 颜填料对环氧改性有机硅耐高温涂料综合性能的影响 [J]. 现代涂料与涂装, 2007, 10(3): 13
11 Lian W Z, Zhang G L, Ma C F, et al. Preparation and properties of high temperature resistant anticorrosive and thermal insulation coatings [J]. Polymeric Materials Science and Engineering, 2017, 33(6): 152
廉卫珍, 张国梁, 马春风 等. 耐高温防腐隔热涂料的制备与性能 [J]. 高分子材料科学与工程, 2017, 33(6): 152
12 Jovanovic J D, Govedarica M N, Dvornic P R, et al. The thermogravimetric analysis of some poly siloxanes [J]. Polymer Degradation & Stability, 1998, 61(1): 87
13 Mitra S K, Roy S K, Bose S K. Influence of superficial coating of CeO2 on the oxidation behavior of AISI 304 stainless steel [J]. Oxidation of Metals, 1993, 39(3-4): 221
doi: 10.1007/BF00665613
14 Huang W R. Development of silicone material market and product (continued sixteen) [J]. Silicone Material and Application, 1998, 12(1): 8
黄文润. 有机硅材料的市场与产品开发(续十六) [J]. 有机硅材料及应用, 1998, 12(1): 8
15 Min C Y, Huang Y D, Song H J, et al. Synthesis of high temperature resistant hybrid silicone resin and high temperature mechanical properties of composite materials [J]. Journal of Solid Rocket Technology, 2011, 34(4): 520
闵春英, 黄玉东, 宋浩杰 等. 耐高温杂化有机硅树脂的合成及复合材料的高温力学性能 [J]. 固体火箭技术, 2011, 34(4): 520
16 Mathivanan L, Radhakrishna S. Heat-resistant anti-corrosive paint from epoxy-silicone vehicles [J]. Anti Corrosion Methods & Materials, 1997, 44(6): 400
17 Zhang H, Zhang T, Shao Y Q, et al. A comparative study on the protective effect of different coatings on 304 stainless steel at high temperature [J]. Heat Treatment of Metals, 2012, 37(2): 96
张 浩, 张 腾, 邵艳群 等. 不同涂层对304不锈钢高温防护效果的对比研究 [J]. 金属热处理, 2012, 37(2): 96
18 Seybolt A U. Observations on the Fe-Cr-O system [J]. Journal of Electrochemical Society, 1960, 107(3): 147
doi: 10.1149/1.2427643
19 Wang Z W, Gong X T, Xie X. High temperature oxidation behavior of pure Cr at 650℃ [J]. Heat Treatment of Metals, 2017, 42(3): 93
王志武, 龚雪婷, 谢 兴. 纯铬的650℃高温氧化行为 [J]. 金属热处理, 2017, 42(3): 93
20 Li T F. High Temperature Oxidation and Hot Corrosion of Metals [M]. Beijing: Chemistry Industry Press, 2003
李铁藩. 金属高温氧化和热腐蚀 [M]. 北京: 化学工业出版社, 2003
[1] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[2] LU Yiliang, DU Yao, WANG Cheng, XIN Li, ZHU Shenglong, WANG Fuhui. Effect of Nano-Al2O3 and -TiO2 Modified Silicone Coatings on High Temperature Oxidation Resistance of 304 Stainless Steel[J]. 材料研究学报, 2021, 35(6): 458-466.
[3] Yao DU,Cheng WANG,Shenglong ZHU,Fuhui WANG. High Temperature Oxidation and Electrochemical Corrosion Behavior of Al Nano-particle Modified Silicone Coating on 304 Stainless Steel[J]. 材料研究学报, 2019, 33(12): 942-948.
[4] Xin GUO,Peiqing LA,Heng LI,Xuefeng LU,Yupeng WEI. Properties of Warm-rolled High Al Containing 304 Austenite Stainless Steel[J]. 材料研究学报, 2017, 31(3): 175-181.
[5] WU Congqian, REN Ruiming, LIU Pengtao, CHEN Chunhuan, ZHAO Xiujuan. Cavitation Erosion of 304 Stainless Steel induced by Caviting Water Jet[J]. 材料研究学报, 2016, 30(6): 473-480.
[6] LIU Guangming YANG Xiaodong LIN Jiyue TIAN Jihong. Influence of MTES Content on the Properties of Al2O3/Organosilicone/SiO2 Hybrid Coatings[J]. 材料研究学报, 2012, 26(4): 402-407.
No Suggested Reading articles found!