Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (2): 133-139    DOI: 10.11901/1005.3093.2021.237
ARTICLES Current Issue | Archive | Adv Search |
Design and Preparation of Mn-based Antipervoskite Magnetic Refrigerant Composites with Wide Temperature Range
LIANG Pengli, YAN Jun(), WEI Shijie, JIANG Congji, CHEN Yunlin
Institute of Applied Micro-Nano Materials, School of Science, Beijing Jiaotong University, Beijing 100044, China
Cite this article: 

LIANG Pengli, YAN Jun, WEI Shijie, JIANG Congji, CHEN Yunlin. Design and Preparation of Mn-based Antipervoskite Magnetic Refrigerant Composites with Wide Temperature Range. Chinese Journal of Materials Research, 2022, 36(2): 133-139.

Download:  HTML  PDF(2824KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Polycrystalline compounds of Mn3Sn1-x Cu x C1-x N x were synthesized by solid-state reaction with Mn3SnC and Mn3CuN as raw materials. The phase transition temperature of Mn3Sn1-x Cu x C1-x N x continuously changes with the variation of the Mn3SnC content. The compounds present platform-shaped magnetic entropy-temperature curves around room temperature. Compared with Mn3SnC, the magnetic cooling temperature range of the compounds changed from 275~285 K to 220~300 K, and the full width at half maximum of magnetic entropy change curve increased from 5 K to 70 K. However, the magnetic entropy of the compounds decreased significantly. The relationship among the maximum of magnetic entropy change, the half-height width of the magnetic entropy change curve for the compounds and the relative cooling power of the monomer materials was acquired. The competition between expanding the cooling temperature range and increasing the magnetic entropy change can be well understood. This quantitative formula is of significance in the field not only for the antiperovskite materials, but also for other magnetic refrigerant composites. In this work a new calculation and prediction method of magnetic refrigerant composites were proposed based on the heat flow curve of monomer material, and it could greatly simplify the design process of composite materials.

Key words:  composite      magnetocaloric effect      antipervoskite      phase transition     
Received:  15 April 2021     
ZTFLH:  O469  
Fund: National Natural Science Foundation of China(51802014);the Fundamental Research Funds for the Central Universities(2019JBM06 8)
About author:  YAN Jun, Tel: 18701457461, E-mail: yanjun@bjtu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.237     OR     https://www.cjmr.org/EN/Y2022/V36/I2/133

Fig.1  XRD pattern of Mn3CuN (a), Mn3SnC (b) and Mn3Sn1-x Cu x C1-x N x (x=0.125, 0.111, 0.100, 0.091) (c) at room temperature
Fig.2  Room temperature XRD pattern of composite sample and composite component at (200) peak
Fig.3  Temperature dependence of the heat flows (a) and entropy changes (b) for Mn3SnC and Mn3Sn1-x Cu x C1-x N x (x=0.125,0.111, 0.100, 0.091) and temperature dependence of the heat flows (c) and entropy changes (d) for composite material (The solid line and dash line represent the experimental measurement and theoretical calculation, respectively)
Fig.4  Temperature dependence of the magnetization (M-T) for Mn3SnC, Mn3Sn1-x Cu x C1-x N x (x=0.125,0.111, 0.100, 0.091) and composite material in 500 Oe magnetic field
Fig.5  Cyclic magnetization isotherms of composite material at various temperatures (a) and Magnetic entropy change as a function of temperature ((-?SM )-T) (b) for composite material
1 Hu Yiga , Rigun Te , Tegus O . Phase Structure,Magnetism and Magnetocaloric Effect of Gd1- x Ho x TiGe [J]. Journal of the Chinese Rare Earth Society, 2020, 38(5): 617
胡义嘎, 特利贡, 特古斯 . Gd1- x Ho x TiGe的物相结构和磁性及磁热效应 [J]. 中国稀土学报. 2020, 38(5): 617
2 Uporov S A , Ryltsev R E , Bykov V A , et al . Glass-forming ability, structure and magnetocaloric effect in Gd-Sc-Co-Ni-Al bulk metallic glasses [J]. Journal of Alloys and Compounds, 2021, 854: 157170
3 Zhang H , Sun Y , Niu E , et al . Enhanced mechanical properties and large magnetocaloric effects in bonded La(Fe, Si)13-based magnetic refrigeration materials [J]. Applied Physics Letters, 2014, 104(6): 062407
4 Hao J , Hu F , Wang J T , et al . Large enhancement of magnetocaloric and barocaloric effects by hydrostatic pressure in La(Fe0.92-Co0.08)11.9Si1.1 with a NaZn13-type structure [J]. Chemistry of Materials, 2020, 32(5): 1807
5 Zhang H , Hu F , Sun J , et al . Effects of interstitial H and/or C atoms on the magnetic and magnetocaloric properties of La(Fe, Si)13-based compounds [J]. Science China Physics, Mechanics and Astronomy, 2013, 56(12): 2302
6 Miao X , Wang W , Liang H , et al . Printing (Mn, Fe)2(P,Si) magnetocaloric alloys for magnetic refrigeration applications [J]. Journal of Materials Science, 2020, 55(15): 6660
7 Sun N K , Zhong D H , Ren Z X , et al . Room-temperature magnetocalor effect and magneto-resistance effect of Co0.525Fe0.475MnP compound [J]. Chin. J. Mater. Res., 2019, 33(2): 124
孙乃坤, 仲德晗, 任增鑫 等 . Co0.525Fe0.475MnP化合物的室温磁热效应和磁电阻效应 [J]. 材料研究学报, 2019, 33(2): 124
8 Wang B S , Tong P , Sun Y P , et al . Large magnetic entropy change near room temperature in antipervoskite SnCMn3 [J]. EPL (Europhysics Letters), 2009, 85(4): 47004
9 Yan J , Sun Y , Wu H , et al . Phase transitions and magnetocaloric effect in Mn3Cu0.89N0.96 [J]. Acta Materialia, 2014, 74: 58
10 Lin S , Wang B S , Hu X B , et al . The structural, magnetic, electrical/thermal transport properties and reversible magnetocaloric effect in Fe-based antipervoskite compound AlC1.1Fe3 [J]. Journal of Magnetism and Magnetic Materials, 2012, 324(20): 3267
11 Zhong X , Tang P , Gao B , et al . Magnetic properties and magnetocaloric effects in amorphous and crystalline Gd55Co35Ni10 ribbons [J]. Science China Physics, Mechanics and Astronomy, 2013, 56(6): 1096
12 Yu B F , Gao Q , Zhang B , et al . Review on research of room temperature magnetic refrigeration [J]. International Journal of Refrigeration, 2003, 26(6): 622
13 Li X , Xing Ru , Liu J , et al . Magnetocaloric Effect of Tb-doped Double Perovskite Oxide Pr2CoMnO6 [J]. Chin. J. Mater. Res,2020,34(1):73
李晓欣, 邢 茹, 刘 娇 等 . Tb掺杂双钙钛矿氧化物Pr2CoMnO6的磁热效应 [J]. 材料研究学报, 2020, 34(1): 73
14 Ohnishi T , Soejima K , Yamashita K , et al . Magnetocaloric properties of (MnFeRu)2(PSi) as magnetic refrigerants near room temperature [J]. Magnetochemistry, 2017, 3(1): 6
15 Born N O , Caron L , Seeler F , et al . Tuning nature and temperature of structural and magnetic phase transitions of Mn3Cu1- y MyN1- x C x (M=Ag, Ni) [J]. Journal of Alloys and Compounds, 2019, 793: 185
16 Tian H C , Zhong X C , Liu Z W , et al . Achieving table-like magnetocaloric effect and large refrigerant capacity around room temperature in Fe78- x Ce x Si4Nb5B12Cu1 (x=0-10) composite materials [J]. Materials Letters, 2015, 138: 64
17 Zhou L , Tang Y , Chen Y , et al . Table-like magnetocaloric effect and large refrigerant capacity of composite magnetic refrigerants based on LaFe11.6Si1.4H alloys [J]. Journal of Rare Earths, 2018, 36(6): 613
18 Yang C , Tong P , Lin J C , et al . Large magnetic entropy change associated with the weakly first-order paramagnetic to ferrimagnetic transition in antiperovskite manganese nitride CuNMn3 [J]. Journal of Applied Physics, 2014, 116(3): 033902
19 Yan J , Sun Y , Wen Y , et al . Relationship between spin ordering, entropy, and anomalous lattice variation in Mn3Sn(1-ε)SiεC(1- δ) compounds [J]. Inorg Chem, 2014, 53(4): 2317
20 Yu M H , Lewis L H , Moodenbaugh A R . Large magnetic entropy change in the metallic antiperovskite Mn3GaC [J]. Journal of Applied Physics, 2003, 93(12): 10128
21 Shao Q , Lv Q , Yang X , et al . Low-field magnetocaloric effect in antiperovskite Mn3Ga1- x Ge x C compounds [J]. Journal of Magnetism and Magnetic Materials, 2015, 396: 160
22 Wang B S , Tong P , Sun Y P , et al . Magnetism, magnetocaloric effect and positive magnetoresistance in Fe-doped antipervoskite compounds SnCMn3- x Fe x (x=0.05-0.20) [J]. Journal of Magnetism and Magnetic Materials, 2010, 322(1):163
23 Wang B S , Lu W J , Lin S , et al . Magnetic/structural diagram, chemical composition-dependent magnetocaloric effect in self-doped antipervoskite compounds Sn1- x CMn3+ x (0≤x≤0.40) [J]. Journal of Magnetism and Magnetic Materials, 2012, 324(5): 773
24 Yan J , Sun Y , Wang C , et al . Effects of Co doping on the magnetic properties, entropy change, and magnetocaloric effect in Mn3-Sn1- x Co x C1.1 compounds [J]. Acta Physica Sinica, 2014, 63(16): 167502
闫 君, 孙 莹, 王 聪 等 . Co掺杂对Mn3Sn1- x Co x C1.1化合物的磁性质、熵变以及磁卡效应的影响 [J]. 物理学报, 2014, 63(16): 167502
25 Born N O , Caron L , Seeler F , et al . Tunable giant magnetocaloric effect with very low hysteresis in Mn3CuN1- x C x [J]. Journal of Alloys and Compounds, 2018, 749: 926
26 Phan M H , Yu S C . Review of the magnetocaloric effect in manganite materials [J]. Journal of Magnetism and Magnetic Materials, 2007, 308(2): 325
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] YANG Dongtian, XIONG Liangyin, LIAO Hongbin, LIU Shi. Improved Design of CLF-1 Steel Based on Thermodynamic Simulation[J]. 材料研究学报, 2023, 37(8): 590-602.
[4] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[5] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[6] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[7] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[8] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[9] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[10] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[11] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[12] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[13] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[14] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[15] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
No Suggested Reading articles found!