Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (11): 820-826    DOI: 10.11901/1005.3093.2020.574
ARTICLES Current Issue | Archive | Adv Search |
Facile Preparation of Electrospun Carbon Nanofiber Aerogels for Oils Absorption
XU Wencui1,2, LIN Yingzheng2, SHAO Zaidong2, ZHENG Yuming2, CHENG Xuan1(), ZHONG Lubin2()
1.College of Materials, Xiamen University, Xiamen 361005, China
2.CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
Cite this article: 

XU Wencui, LIN Yingzheng, SHAO Zaidong, ZHENG Yuming, CHENG Xuan, ZHONG Lubin. Facile Preparation of Electrospun Carbon Nanofiber Aerogels for Oils Absorption. Chinese Journal of Materials Research, 2021, 35(11): 820-826.

Download:  HTML  PDF(9304KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The polyacrylonitrile (PAN) three-dimensional nanofibers were prepared by electrospinning and liquid phase receiving technique, and then the ultra-light carbon nanofiber aerogels (CNFAs) with excellent mechanical properties were obtained by post thermal stabilizing the nanofibers. There exists a network of open holes formed by overlapping carbon nanofibers inside the CNFAs, which can bounce back to its original shape after 80% strain. The water contact angle of CNFAs increased to 145o after hydrophobic treatment via vapor depositionof polydimethylsiloxane (PDMS). The effect of the original bulk density of electro-spun nanofibers on the volume shrinkage, density, oil absorption capacity and cyclic adsorption capacity of CNFAs was assessed. The results show that 4 mg·mL-1 is a more appropriate initial bulk density, and the adsorption capacity of CNFAs for oil pollutants can reach 185 times of its own weight. The CNFAs of saturated absorption could be recovered by direct combustion or extrusion, and even after 10 cycles of combustion recovery, the adsorption capacity of the recovered CNFAs could remain by a rather stable level.

Key words:  surface and interface in the materials      carbon aerogel      electrospinning      oil sorbent      liquid-assist collector     
Received:  30 December 2020     
ZTFLH:  X703.1  
Fund: National Natural Science Foundation of China(51578525)
About author:  ZHONG Lubin, Tel: 15960240263, E-mail: lbzhong@iue.ac.cn
CHENG Xuan, Tel: 18906033999, E-mail: xcheng@xmu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.574     OR     https://www.cjmr.org/EN/Y2021/V35/I11/820

Fig.1  Optical photo graphs of CNFAs in different preparation steps
Fig.2  Compressibility property comparison of NFAs (a) and CNFAs (b)
Fig.3  Stress-strain curves of carbon nanofiber aerogels with different initial densities (a) and heat treated at different temperatures (b) after 80% strain
Fig.4  Raman spectra of carbon nanofiber aerogels heat treated at different temperatures
Fig.5  Volume shrinkage rate and final density of CNFAs
Fig.6  SEM images of CNFAs before (a) and after (b) PDMS vapor deposition
Fig.7  Water contact angle (WCA) measurement of CNFAs
Fig.8  WCA measurement of CNFAs after PDMS vapor deposition for different time
Fig.9  Absorption capacity toward ethanol of CNFAs with different original stacking density
Fig.10  Absorption capacity of CNFAs (original stacking density 4 mg/mL) toward diverse oils
Fig.11  Regeneration process of saturated CNFAs by combustion
Fig.12  Cyclic absorption capacity of CNFAs with different original density recycled by combustion
Fig.13  Regeneration process of saturated CNFAs by squeezi
Fig.14  Cyclic absorption capacity of CNFAs with different original density recycled by squeezing
1 Chen C H S, Yuan T H, Shie R H, et al. Linking sources to early effects by profiling urine metabolome of residents living near oil refineries and coal-fired power plants [J]. Environ Int, 2017, 102: 87
2 Li P Y, Fang Y J, Gao Y K, et al. Research progress on methods of removing oil pollutants from water [J]. Journal of Green Science and Technology, 2020, 18: 92
李珮瑜, 方英杰, 高益康等. 水体中浮油污染物去除 方法研究进展 [J]. 绿色科技, 2020, 18: 92
3 Wang Q Z, Qin Y, Xue C L, et al. Facile fabrication of bubbles-enhanced flexible bioaerogels for efficient and recyclable oil adsorption [J]. Chem. Eng. J, 2020, 402: 126240
4 Xie C, Xing J, Ding Y M, et al. Preparation and oil absorption properties of PP non-woven nanofiber membranes by melt differential electrospinning [J]. Journal of Materials Engineering, 2020, 48 (6): 125
谢超, 邢健, 丁玉梅等. 熔体微分电纺回收PP无纺布纳米纤维膜制备及吸油性能 [J]. 材料工程, 2020, 48 (6): 125
5 Maleki H. Recent advances in aerogels for environmental remediation applications: A review [J]. Chem. Eng. J, 2016, 300: 98
6 Feng Y, Yao J. Design of melamine sponge-based three-dimensional porous materials towards applications [J]. Ind. Eng. Chem. Res, 2018, 57: 7322
7 Feng Y, Wang Y, Wang Y, et al. Furfuryl alcohol modified melamine sponge for high-efficient oil spill clean-up and recovery [J]. Journal of Materials Chemistry A, 2017, 5 (41): 21893
8 Du G Y, Zhu C W, Zeng W Q, et al. Preparation and oil absorption properties of graphene composite modified sponge [J]. Chinese Journal of Environmental Engineering, 2018, 12 (3): 741
杜国勇, 朱成旺, 曾文强等. 石墨烯复合改性海绵的制备及其吸油性能 [J]. 环境工程学报, 2018, 12 (3): 741
9 Kukkar D, Rani A, Kumar V, et al. Recent advances in carbon nanotube sponge-based sorption technologies for mitigation of marine oil spills [J]. J. Colloid Interface Sci, 2020, 570: 411
10 Zhuo L, Wang X T, Yang D Z, et al. Photothermal hierarchical carbon nanotube/reduced graphene oxide microspherical aerogels with radially orientated microchannels for efficient cleanup of crude oil spills [J]. J. Colloid Interface Sci, 2020, 570: 61
11 Li J H, Li J Y, Meng H, et al. Ultra-light compressible and fire-resistant graphene aerogel as a highly efficient and recyclable absorbent for organic liquids [J]. Journal of Material Chemistry A, 2014, 2 (9): 2934
12 Pethsangave D A, Wadekar P H, Khose R V, et al. Super-hydrophobic carrageenan cross-linked graphene sponge for recovery of oil and organic solvent from their water mixtures [J]. Polym Test, 2020, 90: 106743
13 Wu Z Y, Li C, Liang H W. Ultralight,flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose [J]. Angew Chem Int Edit, 2013, 52 (10): 2925
14 Li Y Z, Zhu L Q, Grishkewich N, et al. CO2-responsive cellulose nanofibers aerogels for switchable oil-water separation [J]. ACS Appl Mater Inter, 2019, 11 (9): 9367
15 Han S J, Sun Q F, Zheng H H, et al. Green and facile fabrication of carbon aerogels from cellulose-based waste newspaper for solving organic pollution [J]. Carbohydr Polym, 2016, 136: 95
16 Chen T, Li M X, Zhou L, et al. Bio-inspired biomass-derived carbon aerogels with superior mechanical property for oil-water separation [J]. ACS Sustain Chem Eng, 2020, 8(16): 6458
17 Liu Z, Wen M, Liu Y, et al. Preparation and properties of pyrolysis grapefruit peel oil absorbing materials [J]. Chinese Journal of Environmental Engineering, 2016, 10(4): 1818
刘钊, 文明, 刘洋等. 热解柚子皮吸油材料的制备及性能 [J]. 环境工程学报, 2016, 10 (4): 1818
18 Sun B, Long Y Z, Yu F, et al. Self-assembly of a three-dimensional fibrous polymer sponge by electrospinning [J]. Nanoscale, 2012, 4 (6): 2134
19 Si Y, Yu J Y, Tang X M, et al. Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality [J]. Nat Commun, 2014, 5: 5802
20 Rahaman M S A, Ismail A F, Mustafa A. A review of heat treatment on polyacrylonitrile fiber [J]. Polym Degrad Stabil, 2007, 92(8): 1421
21 Guo Z Y, Liu X C, Huang H D, et al. Graphitization control and NO catalytic performance of electrospinning PAN nanofibers [J]. Journal of Tiangong University, 2020, 39(4): 20
郭泽宇, 刘宣材, 黄贺东等. 电纺PAN纳米纤维的石墨化调控及对NO的催化性能 [J]. 天津工业大学学报, 2020, 39(4): 20
22 Yuan J K, Liu X G, Akbulut O, et al. Superwetting nanowire membranes for selective absorption [J]. Nat Nanotechnol, 2008, 3(6): 332
23 Sun H X, Li A, Zhu Z Q, et al. Superhydrophobic activated carbon-coated sponges for separation and absorption [J]. ChemSusChem, 2013, 6(6): 1057
24 Liu Q Z, Chen J H, Mei T, et al. A facile route to the production of polymeric nanofibrous aerogels for environmentally sustainable applications [J]. Journal of Material Chemistry A, 2018, 6(8): 3692
25 Sun H Y, Xu Z, Gao C. Multifunctional, ultra-flyweight,synergistically assembled carbon aerogels [J]. Adv. Mater, 2013, 25(18): 2554
[1] WANG Qian, PU Lei, JIA Caixia, LI Zhixin, LI Jun. Inhomogeneity of Interface Modification of Carbon Fiber/Epoxy Composites[J]. 材料研究学报, 2023, 37(9): 668-674.
[2] LU Yimin, MA Lifang, WANG Hai, XI Lin, XU Manman, YANG Chunlai. Carbon-base Protective Coating Grown by Pulsed Laser Deposition on Copper Substrate[J]. 材料研究学报, 2023, 37(9): 706-712.
[3] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[5] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[6] CHEN Kaiwang, ZHANG Penglin, LI Shuwang, NIU Xianming, HU Chunlian. High-temperature Tribological Properties for Plasma Spraying Coating of Ni-P Plated Mullite Powders[J]. 材料研究学报, 2023, 37(1): 39-46.
[7] SHAN Weiyao, WANG Yongli, LI Jing, XIONG Liangyin, DU Xiaoming, LIU Shi. High Temperature Oxidation Resistance of Cr Based Coating on Zirconium Alloy[J]. 材料研究学报, 2022, 36(9): 699-705.
[8] ZHANG Hongliang, ZHAO Guoqing, OU Junfei, Amirfazli Alidad. Superhydrophobic Cotton Fabric Based on Polydopamine via Simple One-Pot Immersion for Oil Water Separation[J]. 材料研究学报, 2022, 36(2): 114-122.
[9] CUI Li, SUN Lili, GUO Peng, MA Xin, WANG Shuyuan, WANG Aiying. Effect of Deposition Time on Structure and Performance of Diamond-like Carbon Films on PEEK[J]. 材料研究学报, 2022, 36(11): 801-810.
[10] LI Jianzhong, ZHU Boxuan, WANG Zhenyu, ZHAO Jing, FAN Lianhui, YANG Ke. Preparation and Properties of Copper-carrying Polydopamine Coating on Ureteral Stent[J]. 材料研究学报, 2022, 36(10): 721-729.
[11] LI Rui, WANG Hao, ZHANG Tiangang, NIU Wei. Microstructure and Properties of Laser Clad Ti2Ni+TiC+Al2O3+CrxSy Composite Coating on Ti811 Alloy[J]. 材料研究学报, 2022, 36(1): 62-72.
[12] LI Xiuxian, QIU Wanqi, JIAO Dongling, ZHONG Xichun, LIU Zhongwu. Promotion Effect of α-Al2O3 Seeds on Low-temperature Deposition of α-Al2O3 Films by Reactive Sputtering[J]. 材料研究学报, 2022, 36(1): 8-12.
[13] FAN Jinhui, LI Pengfei, LIANG Xiaojun, LIANG Jiangping, XU Changzheng, JIANG Li, YE Xiangxi, LI Zhijun. Interface Evolution During Rolling of Ni-clad Stainless Steel Plate[J]. 材料研究学报, 2021, 35(7): 493-500.
[14] ZHANG Huichen, QI Xuelian. Super Low Friction Characteristics Initiated by Running-in Process in Water-based Lubricant for Ti-Alloy[J]. 材料研究学报, 2021, 35(5): 349-356.
[15] LIU Fuguang, CHEN Shengjun, PAN Honggen, DONG Peng, MA Yingmin, HUANG Jie, YANG Erjuan, MI Zihao, WANG Yansong, LUO Xiaotao. Thermally Sprayed Thermal Barrier Coating of MCrAlY/8YSZ with Hybrid Microstructure and Its Spallation Resistance[J]. 材料研究学报, 2021, 35(4): 313-320.
No Suggested Reading articles found!