Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (10): 785-794    DOI: 10.11901/1005.3093.2020.426
ARTICLES Current Issue | Archive | Adv Search |
Effect of Mn on Wetting Behavior of X80 Steel in Molten Zn-Mn Alloy
PENG Haoping1,2,3, XI Shiheng2, CUI Derong2, LIU Ya1,3, DENG Song2, SU Xuping1,3, RUAN Ruiwen2()
1.Jiangsu Key Laboratory of Material Surface Science and Technology, Changzhou University, Changzhou 213164, China
2.Jiangsu Key Laboratory of Oil & Gas Storage and Transportation Technology, Changzhou University, Changzhou 213164, China
3.Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China
Cite this article: 

PENG Haoping, XI Shiheng, CUI Derong, LIU Ya, DENG Song, SU Xuping, RUAN Ruiwen. Effect of Mn on Wetting Behavior of X80 Steel in Molten Zn-Mn Alloy. Chinese Journal of Materials Research, 2021, 35(10): 785-794.

Download:  HTML  PDF(16980KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of the addition of Mn in the range of 0.1%~0.5% (mass fraction) in molten Zn-Mn alloys at 450℃on the surface wetting behavior of X80 steel was studied by means of contact angle measurement with an improved sessile drop method and microstructure observation with SEM-EDS in terms especially of the interaction at interface molten Zn-χMn(χ=0.1~0.5) alloys/X80 steel substrate. The results show that Mn can play a positive role in the wettability between the molten Zn alloy and the steel. At 450℃, with the increasing Mn content from 0.1 to 0.5, the wetting contact angle between the molten Zn-χMn alloy and the steel decreases from 85° to 62°. The molten Zn alloy/X80 steel belongs to the reactive wetting system, correspondingly, the interface reaction may result in interface products composed of FeZn10(δ), FeZn13(ζ) and Fe3Zn10(Γ)/Fe5Zn21(Γ1) phases. Therefore, the wetting behavior is affected by the interface reaction. There is a precursor film emerged at the front of the three-phase line, which can enhance the wettability of the molten Zn alloy to X80 steel.

Key words:  surface and interface in the materials      wetting behavior      hot dip galvanizing      contact angle     
Received:  14 October 2020     
ZTFLH:  TG178  
Fund: National Natural Science Foundation of China(51671037);Natural Science Research Project of Higher Education of Jiangsu Province(19KJA530001);Postgraduate Research & Practice Innovation Program of Jiangsu Province(KYCX20-2574);Qing Lan Project of Education Department of Jiangsu Province
About author:  RUAN Ruiwen, Tel: (0519)86330800, E-mail: ruanrwczu@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.426     OR     https://www.cjmr.org/EN/Y2021/V35/I10/785

CSiMnPSCrNiMoNb
0.0540.301.840.0110.00410.330.100.0910.075
Table 1  Chemical composition of X80 steel (mass fraction, %)
Fig.1  Variations of contact angle of Zn-Mn alloy/X80 steel with Mn content at 450℃ (a) curve of contact angle with time, (b) variation curve of initial contact angle and final contact angle
Fig.2  Wetting surface morphologies of Zn-xMn alloy melts and X80 steel, x= (a) 0.1%, (b) 0.2%, (c) 0.3%, (d) 0.4% and (e) 0.5% (mass fraction)
Precursor filmFeMnZn
1#7.910.2191.88
2#6.340.3293.34
3#8.030.6591.32
4#9.230.7190.06
5#6.291.0892.63
Table 2  Chemical compositions of precursor films (mass fraction, %)
Fig.3  Morphologies of precursor films of various Zn-xMn alloys, x= (a) 0.1%, (b) 0.2%, (c) 0.3%, (d) 0.4% and (e) 0.5%(mass fraction)
Fig.4  Cross-sectional morphologies of Zn-xMn alloy/X80 steel interfaces, x= (a) 0.1%, (b) 0.2%, (c) 0.3%, (d) 0.4% and (e) 0.5% (mass fraction)
Mark pointFeMnZn
1#6.180.4193.41
2#5.320.8093.88
3#6.040.9593.01
4#9.230.2190.56
5#5.291.0693.65
6#7.230.4492.33
7#8.090.4591.46
8#5.581.0293.40
9#5.771.9992.24
10#8.400.2891.32
Table 3  Chemical compositions of marked points in Fig.4 (mass fraction, %)
Fig.5  Microstructure of Zn-0.5%Mn (mass fraction) /X80 steel interface
Fig.6  Schematic diagrams of different stages of wetting and spreading
1 Zhang C G, Zheng L, Xie S Q, et al. Recent developments of large diameter X80 UOE line pipes [J]. Baosteel Techn. Res., 2014, 8: 46
2 Huo X D, Dong F, Li L J. Study on microstructure and properties of X80 pipeline steel [J]. Adv. Mater. Res., 2014, 941-944: 138
3 Shanmugam S, Ramisetti N K, Misra R D K, et al. Microstructure and high strength–toughness combination of a new 700 MPa Nb-microalloyed pipeline steel [J]. Mater. Sci. Eng., 2008, 478A: 26
4 Reip C P, Shanmugam S, Misra R D K. High strength microalloyed CMn(V-Nb-Ti) and CMn(V-Nb) pipeline steels processed through CSP thin-slab technology: Microstructure, precipitation and mechanical properties [J]. Mater. Sci. Eng., 2006, 424A: 307
5 Zhang Y, Xiao F R, Zhang J W, et al. In situ TEM study of the effect of M/A films at grain boundaries on crack propagation in an ultra-fine acicular ferrite pipeline steel [J]. Acta Mater., 2006, 54: 435
6 Cheng Y, Yu H Y, Wang Y, et al. Effect of strain rate on stress corrosion cracking of X80 pipeline steel [J]. Mater. Eng., 2013, 41(3): 77
程 远, 俞宏英, 王 莹等. 应变速率对X80管线钢应力腐蚀的影响 [J]. 材料工程, 2013, 41(3): 77
7 Liu Z Y, Wang C P, Du C W, et al. Effect of applied potentials on stress corrosion cracking of x80 pipeline steel in simulated Yingtan soil solution [J]. Acta Metall. Sin., 2011, 47: 1434
刘智勇, 王长朋, 杜翠薇等. 外加电位对X80管线钢在鹰潭土壤模拟溶液中应力腐蚀行为的影响 [J]. 金属学报, 2011, 47: 1434
8 Zhu M, Liu Z Y, Du C W, et al. Effects of alternating current on corrosion behavior of X80 pipeline steel in acid soil environment [J]. J. Mater. Eng., 2015, 43(2): 85
朱 敏, 刘智勇, 杜翠薇等. 交流电对X80钢在酸性土壤环境中腐蚀行为的影响 [J]. 材料工程, 2015, 43(2): 85
9 Zhu L. Hot-Dip Galvanizing of Steel [M]. Beijing: Chemical Industry Press, 2006
朱 立. 钢材热镀锌 [M]. 北京: 化学工业出版社, 2006
10 Manna M, Naidu G, Rani N, et al. Characterisation of coating on rebar surface using Hot-dip Zn and Zn-4.9Al-0.1 misch metal bath [J]. Surf. Coat. Technol., 2008, 202: 1510
11 Marder A R. The metallurgy of zinc-coated steel [J]. Prog. Mater Sci., 2000, 45: 191
12 Rovere C A D, Silva R, Moretti C, et al. Corrosion failure analysis of galvanized steel pipes in a water irrigation system [J]. Eng. Fai. Anal., 2013, 33: 381
13 Wang J, Huang Q D, Liu J, et al. Accelerated indoor corrosion of galvanized steel in a simulated atmospheric environment of Guangzhou area [J]. Chin. J. Mater. Res., 2018, 32: 631
王 劲, 黄青丹, 刘 静等. 镀锌钢在模拟广州地区大气环境中的室内加速腐蚀研究 [J]. 材料研究学报, 2018, 32: 631
14 Zhang X G. Corrosion and Electrochemistry of Zinc [M]. New York: Plenum Press, 1996
15 Li X H, Li G X, Wu Y. Hot-dip Plating and Penetration Plating of Steel Parts [M]. Beijing: Chemical Industry Press, 2009
李新华, 李国喜, 吴 勇. 钢铁制件热浸镀与渗镀 [M]. 北京: 化学工业出版社, 2009
16 Shao D W, He Z R, Zhang Y H, et al. Research progress of hot-dip galvanizing technology [J]. Hot Work. Technol., 2012, 41(6): 108
邵大伟, 贺志荣, 张永宏等. 热浸镀锌技术的研究进展 [J]. 热加工工艺, 2012, 41(6): 108
17 Peng H P, Su X P, Wang J H, et al. Interface reaction mechanism for galvanizing in Zn-Al baths [J]. Chin. J. Nonferrous Met., 2012, 22: 3168
彭浩平, 苏旭平, 王建华等. 热浸镀锌铝的界面反应机理 [J]. 中国有色金属学报, 2012, 22: 3168
18 Kong G, Lu J T, Chen J H, et al. Review on progress of technigalva [J]. Corros. Sci. Prot. Technol., 2001, 13: 223
孔 纲, 卢锦堂, 陈锦虹等. 热浸Zn-Ni合金镀层技术的研究与应用 [J]. 腐蚀科学与防护技术, 2001, 13: 223
19 Xu Q L, Zhu Z X, Yin F C. The influence of Ni and Sb in hot-dip galvanizing bath on the structure of alloy coating [J]. Mater. Prot., 2015, 48(12): 20
徐其林, 朱中喜, 尹付成. 热浸镀锌浴中的Ni, Sb对合金镀层组织的影响 [J]. 材料保护, 2015, 48(12): 20
20 Cui D R, Lei Y, Li Z W, et al. Effect of Sb on surface wettability of zinc liquid and X80 steel [J]. Surf. Technol., 2020, 49: 269
崔德荣, 雷 云, 李智伟等. Sb对锌液与X80钢表面润湿性影响的研究 [J]. 表面技术, 2020, 49: 269
21 Pistofidis N, Vourlias G, Konidaris S, et al. The effect of bismuth on the structure of zinc hot-dip galvanized coatings [J]. Mater. Lett., 2007, 61: 994
22 Fratesi R, Ruffini N, Malavolta M, et al. Contemporary use of Ni and Bi in hot-dip galvanizing [J]. Surf. Coat. Technol., 2002, 157: 34
23 Kong G, Lu J T, Chen J H, et al. Effects of elements in zinc bath on batch hot dip galvanizing [J]. Surf. Technol., 2003, 32(4): 7
孔 纲, 卢锦堂, 陈锦虹等. 锌浴中元素对钢结构件热镀锌的影响 [J]. 表面技术, 2003, 32(4): 7
24 Shen P, Fuji H, Matsumoto T, et al. The influence of surface structure on wetting of α-Al2O3 by aluminum in a reduced atmosphere [J]. Acta Mater., 2003, 51: 4897
25 Reumont G, Foct J, Perrot P, New possibilities for the galvanizing process: the addition of manganese and titanium to the zinc bath [A]. Proceedings of 19th International Galvanizing Conference [C]. Berlin: 2000: 1
26 Yue Q C, Cui J Z. The effect of Mn on coloring hot dip galvanization [J]. Mater. Rev., 1999, 13(3): 63
乐启炽, 崔建忠. Mn在彩色热镀锌中的作用 [J]. 材料导报, 1999, 13(3): 63
27 Wu Z S, Wang J H, Su X P. Effect of Mn on microstructure and growth kinetics of hot-dip galvanized Zn-0.2%AL alloy coating [J]. Hot Work. Technol., 2010, 39(22): 123
吴自施, 王建华, 苏旭平等. 锰对热浸Zn-0.2%Al合金镀层组织和生长动力学影响的研究 [J]. 热加工工艺, 2010, 39(22): 123
28 Xie K. Effects of Bi, Ti, Mn on microstructure and properties of Hot-dip galvanized coatings [D]. Hanzhong: Shaanxi Institute of Technology, 2015
解 凯. Bi、Ti、Mn对热浸镀锌镀层组织与性能的影响 [D]. 汉中: 陕西理工学院, 2015
29 Chen J H, Lu J T, Xu Q Y, et al. Study in coloured alloy coatings of hot dipped Zn-Ti-Ni and Zn-Mn-Cu [J]. J. South China Univ. Technol. (Nat. Sci.), 1997, 25(7): 60
陈锦虹, 卢锦堂, 许乔瑜等. 彩色热镀Zn-Ti-Ni和Zn-Mn-Cu合金镀层的研究 [J]. 华南理工大学学报(自然科学版), 1997, 25(7): 60
30 Meng Q H. Effect of Al and Ni on the wetting of several substrates by Zr-Cu based alloys [D]. Changchun: Jilin University, 2013
孟庆贺. Al, Ni对Zr-Cu合金在几种基板表面润湿性的影响 [D]. 长春: 吉林大学, 2013
31 Butt H J, Golovko D S, Bonaccurso E. On the derivation of Young's equation for sessile drops: nonequilibrium effects due to evaporation [J]. J. Phys. Chem., 2007, 111B: 5277
32 Young T. An essay on the cohesion of fluids [J]. Proc. R. Soc. London, 1805, 95: 65
[1] WANG Qian, PU Lei, JIA Caixia, LI Zhixin, LI Jun. Inhomogeneity of Interface Modification of Carbon Fiber/Epoxy Composites[J]. 材料研究学报, 2023, 37(9): 668-674.
[2] LU Yimin, MA Lifang, WANG Hai, XI Lin, XU Manman, YANG Chunlai. Carbon-base Protective Coating Grown by Pulsed Laser Deposition on Copper Substrate[J]. 材料研究学报, 2023, 37(9): 706-712.
[3] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] LI Hanlou, JIAO Xiaoguang, ZHU Huanhuan, ZHAO Xiaohuan, JIAO Qingze, FENG Caihong, ZHAO Yun. Synthesis of Branched Fluorine-containing Polyesters and their Properties[J]. 材料研究学报, 2023, 37(4): 315-320.
[5] CHEN Kaiwang, ZHANG Penglin, LI Shuwang, NIU Xianming, HU Chunlian. High-temperature Tribological Properties for Plasma Spraying Coating of Ni-P Plated Mullite Powders[J]. 材料研究学报, 2023, 37(1): 39-46.
[6] SHAN Weiyao, WANG Yongli, LI Jing, XIONG Liangyin, DU Xiaoming, LIU Shi. High Temperature Oxidation Resistance of Cr Based Coating on Zirconium Alloy[J]. 材料研究学报, 2022, 36(9): 699-705.
[7] ZHANG Hongliang, ZHAO Guoqing, OU Junfei, Amirfazli Alidad. Superhydrophobic Cotton Fabric Based on Polydopamine via Simple One-Pot Immersion for Oil Water Separation[J]. 材料研究学报, 2022, 36(2): 114-122.
[8] CUI Li, SUN Lili, GUO Peng, MA Xin, WANG Shuyuan, WANG Aiying. Effect of Deposition Time on Structure and Performance of Diamond-like Carbon Films on PEEK[J]. 材料研究学报, 2022, 36(11): 801-810.
[9] LI Jianzhong, ZHU Boxuan, WANG Zhenyu, ZHAO Jing, FAN Lianhui, YANG Ke. Preparation and Properties of Copper-carrying Polydopamine Coating on Ureteral Stent[J]. 材料研究学报, 2022, 36(10): 721-729.
[10] LI Rui, WANG Hao, ZHANG Tiangang, NIU Wei. Microstructure and Properties of Laser Clad Ti2Ni+TiC+Al2O3+CrxSy Composite Coating on Ti811 Alloy[J]. 材料研究学报, 2022, 36(1): 62-72.
[11] LI Xiuxian, QIU Wanqi, JIAO Dongling, ZHONG Xichun, LIU Zhongwu. Promotion Effect of α-Al2O3 Seeds on Low-temperature Deposition of α-Al2O3 Films by Reactive Sputtering[J]. 材料研究学报, 2022, 36(1): 8-12.
[12] FAN Jinhui, LI Pengfei, LIANG Xiaojun, LIANG Jiangping, XU Changzheng, JIANG Li, YE Xiangxi, LI Zhijun. Interface Evolution During Rolling of Ni-clad Stainless Steel Plate[J]. 材料研究学报, 2021, 35(7): 493-500.
[13] ZHANG Huichen, QI Xuelian. Super Low Friction Characteristics Initiated by Running-in Process in Water-based Lubricant for Ti-Alloy[J]. 材料研究学报, 2021, 35(5): 349-356.
[14] LIU Fuguang, CHEN Shengjun, PAN Honggen, DONG Peng, MA Yingmin, HUANG Jie, YANG Erjuan, MI Zihao, WANG Yansong, LUO Xiaotao. Thermally Sprayed Thermal Barrier Coating of MCrAlY/8YSZ with Hybrid Microstructure and Its Spallation Resistance[J]. 材料研究学报, 2021, 35(4): 313-320.
[15] TANG Changbin, NIU Hao, HUANG Ping, WANG Fei, ZHANG Yujie, XUE Juanqin. Electrosorption Characteristics of NF/PDMA /MnO2-Co Capacitor Electrode for Pb2+ in a Dilute Solution of Lead Ions[J]. 材料研究学报, 2021, 35(2): 115-127.
No Suggested Reading articles found!