Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (10): 752-760    DOI: 10.11901/1005.3093.2020.535
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Properties of PU-DA System Based on Thermoreversible Diels-Alder Dynamic Covalent Bond
WAN Liying(), XIAO Yang, ZHANG Lunliang
School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
Cite this article: 

WAN Liying, XIAO Yang, ZHANG Lunliang. Preparation and Properties of PU-DA System Based on Thermoreversible Diels-Alder Dynamic Covalent Bond. Chinese Journal of Materials Research, 2021, 35(10): 752-760.

Download:  HTML  PDF(15621KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The highly flexible polytetrahydrofuranediol (PTMG) substrate was reacted with furfuryl glycidyl ether-2-furanethylamine (FGE-FA) to obtain the polyurethane prepolymer of tetrahydrofuran structure, and then it was reacted with bismaleimide of dienophile structure to prepare high density Diels-Alder (DA) self-healing polyurethane (PU-DA) with dynamic covalent bond. The PU-DA was characterized by FTIR, DSC and OM, and the performance of PU-DA was tested by electronic universal testing machine. The results show that the forward and reverse reaction temperatures of PU-DA are 70℃ and 132℃, respectively, after the introduction of DA dynamic covalent bond. PU-DA has good performance in remodeling, swelling solubility and multiple self-healing. Cracks of the damaged PU-DA could basically be healed by heating at 70℃ for 4 h, meanwhile, the first repair rate could 94.8%, and the third repair rate was still higher than 70%.

Key words:  organic polymer materials      self-healing      Diels-Alder reaction      polyurethane      thermal reversibility     
Received:  17 December 2020     
ZTFLH:  TQ323  
Fund: National Natural Science Foundation of China(51463016);Shanghai Aerospace Science and Technology Innovation Fund(SAST2016053)
About author:  WAN Liying, Tel: 13687084426, E-mail: wlygood@nchu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.535     OR     https://www.cjmr.org/EN/Y2021/V35/I10/752

Fig.1  Synthetic routes of PU-DA
Fig.2  FTIR curves of FGE (a), FGE-FA (b), IPDI-PTMG (c) and Pre-PU (d)
Fig.3  ATR-FTIR curves of PU-DA
Fig.4  DSC curves of 1,8-BMI (a) and PU-DA (b)
Fig.5  TGA curves of 1,8-BM and PU-DA
SamplesOriginal sampleSamples repaired time/h
248
Tensile strength/MPa4.202.273.984.07
Elongation at break/%305.59225.14298.98305.16
Repair rate/%-54.0594.7696.90
Table 1  Effect of repair time on mechanical properties of PU-DA
Fig.6  Change of mechanical properties of PU-DA repaired at 70℃ for different time
Fig.7  Swelling and dissolution experiment of PU-DA
T/℃m0/gm1/gm2/gL/%S/%
301.024.490.99340.192.94
901.26-0.04-96.82
Tab.2  Swelling and solubility of PU-DA sample at different temperatures
Fig.8  PU-DAsample self-healing micrograph (a) before repairing, (b) after repairing
Fig.9  Mechanism diagram of PU-DA repair process based on thermoreversible DA dynamic covalent bonds
Fig.10  PU-DA multiple self-healing properties
Fig.11  Stress-strain curves of PU-DA repaired for different repair times
Repair timesStress/MPaElongation at break/%η/%
Original4.20305.59-
1st3.98298.9894.8
2nd3.61291.0385.9
3rd3.02264.7471.9
Table 3  Tensile test and repair rates under multiple self-healing of samples
Fig.12  PU-DA reprocessing performance
1 Xu J F, Lin P, Long L, et al. Aging performance of nano-ZnO modified polyurethane-acrylic UV ink composites on wood and the degradation mechanism [J]. Polym. Composite., 2019, 40(9): 3533
2 Keiichi I, Masamichi N, Atsushi I, et al. Diarylbibenzofuranone-based dynamic covalent polymer gels prepared via radical polymerization and subsequent polymer reaction [J]. Gels, 2015, 1(1): 58
3 White S R, Scottos N R, Geubelle P H, et al. Autonomic healing of polymer composites [J]. Nature, 2001, 409(6822): 794
4 White S R, Moore J S, Sottos N R, et al. Restoration of large Damage volumes in polymers [J]. Science, 2014, 344(6184): 620
5 Burnworth M, Tang L, Kumpfer J R, et al. Optically healable supramolecular polymers [J]. Nature, 2011, 472(7343): 334
6 Du P F, Jia H Y, Chen Q H, et al. Slightly crosslinked polyurethane with Diels-Alder adducts from trimethylolpropane [J]. J. Appl. Polym. Sci., 2016, 133(39): 43971
7 Sun C Y, Jia H Y, Lei K, et al. Self-healing hydrogels with stimuli responsiveness based on acylhydrazone bonds [J]. Polymer, 2019, 160: 246
8 An S Y, Noh S M, Nam J H, et al. Dual sulfide-disulfide crosslinked networks with rapid and room temperature self-healability [J]. Macromol. Rapid. Comm., 2015, 36(13): 1255
9 Guo Z, Ma W, Gu H J, et al. pH-switchable and self-healable hydrogels based on ketone type acylhydrazone dynamic covalent bonds [J]. Soft Matter, 2017: 13(40): 7371
10 Liu Y S, Liu Y G, Wang Q X, et al. Doubly dynamic hydrogel formed by combining boronate ester and acylhydrazone bonds [J]. Polymers, 2020, 12(2): 487
11 Li T, Xie Z N, Xu J, et al. Design of a self-healing cross-linked polyurea with dynamic cross-links based on disulfide bonds and hydrogen bonding [J]. Eur. Polym. J., 2018, 8(5): 8515
12 Alaitz R, Roberto M, Alaitz R D L, et al. Catalyst-free room-temperature self-healing elastomers based on aromatic disulfide metathesis [J]. Mater. Horiz., 2014, 1(2): 237
13 He X, Wang F, Zhao H W, et al. Preparation and healing behavior of self-healing epoxy resins based on Diels-Alder reaction [J]. Chin. J. Mater. Res., 2019, 33(8): 635
何霞, 王飞, 赵翰文等. 基于Diels-Alder反应的自修复环氧树脂的制备和修复行为 [J]. 材料研究学报, 2019, 33(8): 635
14 Shao C Y, Wang M, Chang H L, et al. A self-healing cellulose nanocrystal-poly(ethylene glycol) nanocomposite hydrogel via Diels-Alder click reaction [J]. ACS Sustain. Chem. Eng., 2017, 5(7): 6167
15 Cao L M, Fan J F, Huang J R, et al. Robust and stretchable cross-linked rubber network with recyclable and self-healable capabilities based on dynamic covalent bonds [J]. J. Mater. Chem. A., 2019, 7(9): 4922
16 Xu C H, Cao L M, Lin B F, et al. Design of self-healing supramolecular rubbers by introducing ionic cross-links into natural rubber via a controlled vulcanization [J]. ACS Appl. Mater. Inter., 2016, 8(27): 17728
17 Yang J X, Long Y Y, Pan L, et al. Spontaneously healable thermoplastic elastomers achieved through one-pot living ring-opening metathesis copolymerization of well-designed bulky monomers [J]. ACS Appl. Mater. Inter., 2016, 8(19): 12445
18 Yang Q, Zhao W J, Zhao N, et al. Preparation and properties of a novel AG/PVA/CB[7] hydrogel reinforced by microcrystalline and hydrogen bonds [J]. Chin. J. Mater. Res., 2020, 34(9): 691
杨琴, 赵卫杰, 赵娜等. 微晶和氢键双增强水凝胶AG/PVA/CB[7]的制备和性能 [J]. 材料研究学报, 2020, 34(9): 691
19 Yanagisawa Y, Nan Y, Okuro K, et al. Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking [J]. Science, 2017, 359(6371): 72
20 Xiao G F, Wang Y, Zhang H, et al. Facile strategy to construct a self-healing and biocompatible cellulose nanocomposite hydrogel via reversible acylhydrazone [J]. Carbohyd. Polym., 2019, 218(15): 68
21 Ujjal H, Kamal B, Ren L, et al. Polyisobutylene-based pH-responsive self-healing polymeric gels [J]. ACS Appl. Mater. Inter., 2015, 7(16): 8779
22 Du P, Wu M, Liu X, et al. Synthesis of linear polyurethane bearing pendant furan and cross-linked healable polyurethane containing Diels-Alder bonds [J]. New. J. Chem., 2014, 38(2): 770
23 Feng L B, Yu Z Y, Bian Y H, et al. Self-healing behavior of polyurethanes based on dual actions of thermo-reversible Diels-Alder reaction and thermal movement of molecular chains [J]. Polymer, 2017, 124(1): 48
24 Zhong Y T, Wang X L, Zheng Z, et al. Polyether-maleimide-based crosslinked self-healing polyurethane with Diels-Alder bonds [J]. J. Appl. Polym. Sci., 2015, 132(19): 41994
25 Lakatos C, Czifrak K, Karger-Kocsis J, et al. Shape memory crosslinked polyurethanes containing thermoreversible Diels-Alder couplings [J]. J. Appl. Polym. Sci., 2016, 133(43): 4912
[1] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] LI Hanlou, JIAO Xiaoguang, ZHU Huanhuan, ZHAO Xiaohuan, JIAO Qingze, FENG Caihong, ZHAO Yun. Synthesis of Branched Fluorine-containing Polyesters and their Properties[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] MA Yizhou, ZHAO Qiuying, YANG Lu, QIU Jinhao. Preparation and Dielectric Energy Storage Properties of Thermoplastic Polyimide/Polyvinylidene Fluoride Composite Film[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] SHEN Yanlong, LI Beigang. Preparation of Magnetic Amino Acid-Functionalized Aluminum Alginate Gel Polymer and its Super Adsorption on Azo Dyes[J]. 材料研究学报, 2022, 36(3): 220-230.
[5] LONG Qing, WANG Chuanyang. Thermal Degradation Behavior and Kinetics Analysis of PMMA with Different Carbon Black Contents[J]. 材料研究学报, 2022, 36(11): 837-844.
[6] ZENG Zhipeng, SONG Xiaoyan, SUN Yong, SONG Shuanglin, LU Wei, HE Zhenglong. Microstructure and Mechanical Property of Polyurethane/Water Glass Grouting Materials during Curing Process[J]. 材料研究学报, 2022, 36(11): 855-861.
[7] JIANG Ping, WU Lihua, LV Taiyong, Pérez-Rigueiro José, WANG Anping. Repetitive Stretching Tensile Behavior and Properties of Spider Major Ampullate Gland Silk[J]. 材料研究学报, 2022, 36(10): 747-759.
[8] YAN Jun, YANG Jin, WANG Tao, XU Guilong, LI Zhaohui. Preparation and Properties of Aqueous Phenolic Resin Modified by Organosilicone Oil[J]. 材料研究学报, 2021, 35(9): 651-656.
[9] XU Wen, WANG Zhijie, ZHU Wenwen, PENG Zitong, YAO Chu, YOU Feng, JIANG Xueliang. Preparation and Sound Absorption Properties of MPP-polymers Layered Structure Materials[J]. 材料研究学报, 2021, 35(7): 535-542.
[10] ZHANG Hao, LI Fan, CHANG Na, WANG Haitao, CHENG Bowen, WANG Panlei. Preparation of Carboxylic Acid Grafted Starch Adsorption Resin and Its Dye Removal Performance[J]. 材料研究学报, 2021, 35(6): 419-432.
[11] SUN Liying, QIAN Jianhua, ZHAO Yongfang. Preparation and Performance of AgNWs -TPU/PVDF Flexible Film Capacitance Sensors[J]. 材料研究学报, 2021, 35(6): 441-448.
[12] PAN Ying, ZHAO Hongting. Preparation of Halloysite Based Layer-by-Layer Coating on Flexible Polyurethane Foam and Its Performance of Flame Retardant and Smoke Suppression[J]. 材料研究学报, 2021, 35(6): 449-457.
[13] TANG Kaiyuan, HUANG Yang, HUANG Xiangzhou, GE Ying, LI Pinting, YUAN Fanshu, ZHANG Weiwei, SUN Dongping. Physicochemical Properties of Carbonized Bacterial Cellulose and Its Application in Methanol Electrocatalysis[J]. 材料研究学报, 2021, 35(4): 259-270.
[14] SU Chenwen, ZHANG Tingyue, GUO Liwei, LI Le, YANG Ping, LIU Yanqiu. Preparation of Thiol-ene Hydrogels for Extracellular Matrix Simulation[J]. 材料研究学报, 2021, 35(12): 903-910.
[15] ZHANG Xiangyang, ZHANG Qiyang, ZHENG Tao, TANG Tao, LIU Hao, LIU Guojin, ZHU Hailin, ZHU Haifeng. Fabrication of Composite Material Based on MOFs and its Adsorption Properties for Methylene Blue Dyes[J]. 材料研究学报, 2021, 35(11): 866-872.
No Suggested Reading articles found!