|
|
Preparation and Sound Absorption Properties of MPP-polymers Layered Structure Materials |
XU Wen, WANG Zhijie, ZHU Wenwen, PENG Zitong, YAO Chu, YOU Feng, JIANG Xueliang() |
School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430074, China |
|
Cite this article:
XU Wen, WANG Zhijie, ZHU Wenwen, PENG Zitong, YAO Chu, YOU Feng, JIANG Xueliang. Preparation and Sound Absorption Properties of MPP-polymers Layered Structure Materials. Chinese Journal of Materials Research, 2021, 35(7): 535-542.
|
Abstract MPP-AG resonance structure, MPP-PUFM layered structure, MPP-AG-NBR-PUFM multilayer structure material and NBR-PUFM-MPP-AG multilayer structure material were respectively prepared taking micro-perforated panel (MPP), polyurethane foam (PU), nitrile rubber (NBR) and cavity (AG) micro materials as raw materials, which were placed separately in desired structural order. The effect of MMP perforation rate, PUFM thickness, pore size of foam layer, thickness of foam and alternation order of structure on sound absorption properties of composite materials were investigated. The results show that: at lower frequency, the smaller the MPP perforation rate, and at higher frequency, the higher the MPP perforation rate, the higher the sound absorption coefficient of layered structure materials; With the increase of PUFM thickness, the resonance peak frequency of layered structure materials gradually moves toward the low frequency direction. In comparison with MPP-PUFM, the average sound absorption coefficient of MMP-AG-NBR-PUFM increases from 0.58 to 0.66 in the frequency range of 500~1600 Hz; NBR-PUFM-MPP-AG multi-layer structure material shows excellent sound absorption performance by low and medium frequencies, with the maximum absorption coefficient of 0.94 at 400 Hz and 0.85 at 2700 Hz.
|
Received: 27 September 2020
|
|
Fund: National Natural Science Foundation of China(51273154);Graduate Education Innovation Fund Project of Wuhan Institute of Technology(CX2019056) |
About author: JIANG Xueliang, Tel: (027)87194849, E-mail: jiangxl@wit.edu.cn
|
1 |
Xu S Q, Wang Q. Industrial Noise and Vibration Control [M]. Beijing: Metallurgical Industry Press, 1987
|
|
徐世勤, 王 樯. 工业噪声与振动控制 [M]. 北京: 冶金工业出版社, 1987
|
2 |
Su W, Li X Y, Liu S S. Dicussion on feasibility of nonwovens sound-absorbing materials used for road sound-absorbing barrier [J]. Nonwovens, 2009, 17(2): 20
|
|
苏文, 李新禹, 刘树森. 道路声屏障用非织造布吸声材料的可行性研究 [J]. 浙江纺织服装职业技术学院学报, 2009, 17(2): 20
|
3 |
Zhao L X. Noise and Vibration Control Technology [M]. Beijing: Chemical Industry Press, 2004
|
|
赵良省. 噪声与振动控制技术 [M]. 北京: 化学工业出版社, 2004
|
4 |
Pei C M, Zhou B, Li D K, et al. Study on the composite sound absorber made up of porous materials and MPP [J]. Noise Vib. Control, 2015, 35(5): 35
|
|
裴春明, 周兵, 李登科等. 多孔材料和微穿孔板复合吸声结构研究 [J]. 噪声与振动控制, 2015, 35(5): 35
|
5 |
Maa D Y. Accurate theory and design of microperforated-panel absorbers [J]. Acta Acoustics, 1997, 22: 385
|
|
马大猷. 微穿孔板吸声体的准确理论和设计 [J]. 声学学报, 1997, 22: 385
|
6 |
Ma D Y. Theory and design of sound absorption structure with micro-perforated panel [J]. Chin. Sci., 1975, 18(1): 38
|
|
马大猷. 微穿孔板吸声结构的理论和设计 [J]. 中国科学, 1975, 18: 38
|
7 |
Liu P S. Determining methods for aperture and aperture distribution of porous materials [J]. Titanium Ind. Prog., 2006, 23(2): 29
|
|
刘培生. 多孔材料孔径及孔径分布的测定方法 [J]. 钛工业进展, 2006, 23(2): 29
|
8 |
Liu P S. Determining methods for specific surface area and pore morphology of porous materials [J]. Rare Met. Mater. Eng., 2006, 35(s2): 25
|
|
刘培生. 多孔材料比表面积和孔隙形貌的测定方法 [J]. 稀有金属材料与工程, 2006, 35(S2): 25
|
9 |
Meng W Z, Yang S Y. Study on the design Method of the foam material with regular cell structure [J]. Res. Stud. Found. Equip., 2006, (3): 17
|
|
孟文哲, 杨思一. 具有规则孔型多孔材料的结构设计方法研究 [J]. 铸造设备研究, 2006, (3): 17
|
10 |
Liu W W, He S Y, Huang K, et al. Sound absorption of periodic porous aluminium with controlled pore structures [J]. Chin. J. Mater. Res., 2009, 23: 171
|
|
刘伟伟, 何思渊, 黄可等. 孔结构周期调制通孔多孔铝合金及其吸声性能 [J]. 材料研究学报, 2009, 23: 171
|
11 |
Gwon J G, Kim S K, Kim J H. Sound absorption behavior of flexible polyurethane foams with distinct cellular structures [J]. Mater. Des., 2016, 89: 448
|
12 |
Lin J H, Chuang Y C, Li T T, et al. Effects of perforation on rigid PU foam plates: Acoustic and mechanical properties [J]. Materials, 2016, 9: 1000
|
13 |
Zhang C Q, Kessler M R. Bio-based polyurethane foam made from compatible blends of vegetable-oil-based polyol and petroleum-based polyol [J]. ACS Sustainable Chem. Eng., 2015, 3: 743
|
14 |
Liang H Y, Wang S W, He H, et al. Aqueous anionic polyurethane dispersions from castor oil [J]. Ind. Crop Prod., 2018, 122: 182
|
15 |
Chen M X, Jiang X L, Li J R, et al. Preparation and sound absorption properties of foamed polyurethane [J] J. Wuhan Univ. Technol., 2019, 41: 541
|
|
陈明轩, 江学良, 李菁瑞等. 发泡聚氨酯的制备及吸声性能 [J]. 武汉工程大学学报, 2019, 41: 541
|
16 |
Gholami M S, Doutres O, Atalla N. Effect of variability in microgeometry of polyurethane foams on their macroscopic acoustic performance [A]. Inter-noise & Noise-con Congress & Conference Proceedings [C]. Providence, Rhode Island: Institute of Noise Control Engineering, 2016: 872
|
17 |
Atalla Y, Fu J, Atalla N, et al. Study of the effects of processing parameters on the sound absorption of open-cell microcellular polymeric foams [J]. Noise Control Eng. J., 2010, 58: 18
|
18 |
Lee J, Kim G H, Ha C S. Sound absorption properties of polyurethane/nano-silica nanocomposite foams [J]. J. Appl. Polym. Sci., 2012, 123: 2384
|
19 |
Geng J L, Wang C P, Zhu H L, et al. Effect of the carbonyl iron particles on acoustic absorption properties of magnetic polyurethane foam [A]. Proceedings Volume 10596, Behavior and Mechanics of Multifunctional Materials and Composites XII [C]. Denver, United States: SPIE, 2018: 105961W
|
20 |
Li T T, Zhang X, Wang H Y, et al. Sound absorption and compressive property of PU foam-filled composite sandwiches: Effects of needle-punched fabric structure, porous structure, and fabric-foam interface [J]. Polym. Adv. Technol., 2020, 31: 451
|
21 |
Jiang X L, Yang Z, Wang Z J, et al. Preparation and sound absorption properties of a barium Titanate/Nitrile butadiene rubber-polyurethane foam composite with multilayered structure [J]. Materials, 2018, 11: 474
|
22 |
He L. Acoustics Theory and Engineering Applications [M]. Beijing: Science Press, 2006
|
|
何琳. 声学理论与工程应用 [M]. 北京: 科学出版社, 2006
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|