Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (7): 535-542    DOI: 10.11901/1005.3093.2020.401
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Sound Absorption Properties of MPP-polymers Layered Structure Materials
XU Wen, WANG Zhijie, ZHU Wenwen, PENG Zitong, YAO Chu, YOU Feng, JIANG Xueliang()
School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430074, China
Cite this article: 

XU Wen, WANG Zhijie, ZHU Wenwen, PENG Zitong, YAO Chu, YOU Feng, JIANG Xueliang. Preparation and Sound Absorption Properties of MPP-polymers Layered Structure Materials. Chinese Journal of Materials Research, 2021, 35(7): 535-542.

Download:  HTML  PDF(3988KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

MPP-AG resonance structure, MPP-PUFM layered structure, MPP-AG-NBR-PUFM multilayer structure material and NBR-PUFM-MPP-AG multilayer structure material were respectively prepared taking micro-perforated panel (MPP), polyurethane foam (PU), nitrile rubber (NBR) and cavity (AG) micro materials as raw materials, which were placed separately in desired structural order. The effect of MMP perforation rate, PUFM thickness, pore size of foam layer, thickness of foam and alternation order of structure on sound absorption properties of composite materials were investigated. The results show that: at lower frequency, the smaller the MPP perforation rate, and at higher frequency, the higher the MPP perforation rate, the higher the sound absorption coefficient of layered structure materials; With the increase of PUFM thickness, the resonance peak frequency of layered structure materials gradually moves toward the low frequency direction. In comparison with MPP-PUFM, the average sound absorption coefficient of MMP-AG-NBR-PUFM increases from 0.58 to 0.66 in the frequency range of 500~1600 Hz; NBR-PUFM-MPP-AG multi-layer structure material shows excellent sound absorption performance by low and medium frequencies, with the maximum absorption coefficient of 0.94 at 400 Hz and 0.85 at 2700 Hz.

Key words:  composite      micro-perforated plate      polyurethane foam      nitrile rubber      layered structure      sound absorption     
Received:  27 September 2020     
ZTFLH:  TB332  
Fund: National Natural Science Foundation of China(51273154);Graduate Education Innovation Fund Project of Wuhan Institute of Technology(CX2019056)
About author:  JIANG Xueliang, Tel: (027)87194849, E-mail: jiangxl@wit.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.401     OR     https://www.cjmr.org/EN/Y2021/V35/I7/535

Parametersd/mmt/mmD/mmσ/%
a11100,302
b11100,305
c15100,302
d110100,302
e115100,302
Table 1  Structural parameters of the MPP test specimens
Fig.1  Schematic diagram of MPP materials of layer structure (a) MPP-AG, (b) MPP-PUFM, (c) MPP-AG-NBR-PUFM, (d) NBR-PUFM-MPP-AG
Fig.2  Effect of the perforation ratio on sound absorption properties of the MPP-PUFM composites with stratified structure
Fig.3  Effect of the kinds of materials on sound absorption properties of the MPP-AG resonance structures
Fig.4  Effect of thickness of MPP on sound absorption properties of the MPP-AG resonance structures
Fig.5  Effect of thickness of PUFM on sound absorption properties of the MPP-PUFM composites with stratified structure (a) σ=0.02, (b) σ=0.05
Fig.6  Optical microscope images and cell distributions of PUFM composites (a, a') OM images of the SPUF, (b, b') OM images of the LPUF, (c) cell distributions
Fig.7  Effect of the cell size of PUFM on sound absorption properties of the MPP-PUFM composites with stratified structure
Fig.8  Sound absorption curves of the MPP-AG-NBR-PUFM multi-layer structural materials (a) MPP-AG, (b) MPP-PUFM, (c) MPP-AG-NBR-PUFM, (d) NBR-PUFM-MPP-AG
Fig.9  Sound absorption curves of the MPP-AG-NBR-PUFM multi-layer structural materials with different layer thickness ratio of AG/PUFM (a) 5∶1, (b) 4∶1, (c) 3∶2, (d) 2∶3, (e) 1∶4, (f) 1∶5
Fig.10  Sound absorption curves of the NBR-PUFM-MPP-AG multi-layer structural materials with different layer thickness ratio of PUFM/AG (a) 5∶1, (b) 4∶1, (c) 3∶2, (d) 2∶3, (e) 1∶4, (f) 1∶5
1 Xu S Q, Wang Q. Industrial Noise and Vibration Control [M]. Beijing: Metallurgical Industry Press, 1987
徐世勤, 王 樯. 工业噪声与振动控制 [M]. 北京: 冶金工业出版社, 1987
2 Su W, Li X Y, Liu S S. Dicussion on feasibility of nonwovens sound-absorbing materials used for road sound-absorbing barrier [J]. Nonwovens, 2009, 17(2): 20
苏文, 李新禹, 刘树森. 道路声屏障用非织造布吸声材料的可行性研究 [J]. 浙江纺织服装职业技术学院学报, 2009, 17(2): 20
3 Zhao L X. Noise and Vibration Control Technology [M]. Beijing: Chemical Industry Press, 2004
赵良省. 噪声与振动控制技术 [M]. 北京: 化学工业出版社, 2004
4 Pei C M, Zhou B, Li D K, et al. Study on the composite sound absorber made up of porous materials and MPP [J]. Noise Vib. Control, 2015, 35(5): 35
裴春明, 周兵, 李登科等. 多孔材料和微穿孔板复合吸声结构研究 [J]. 噪声与振动控制, 2015, 35(5): 35
5 Maa D Y. Accurate theory and design of microperforated-panel absorbers [J]. Acta Acoustics, 1997, 22: 385
马大猷. 微穿孔板吸声体的准确理论和设计 [J]. 声学学报, 1997, 22: 385
6 Ma D Y. Theory and design of sound absorption structure with micro-perforated panel [J]. Chin. Sci., 1975, 18(1): 38
马大猷. 微穿孔板吸声结构的理论和设计 [J]. 中国科学, 1975, 18: 38
7 Liu P S. Determining methods for aperture and aperture distribution of porous materials [J]. Titanium Ind. Prog., 2006, 23(2): 29
刘培生. 多孔材料孔径及孔径分布的测定方法 [J]. 钛工业进展, 2006, 23(2): 29
8 Liu P S. Determining methods for specific surface area and pore morphology of porous materials [J]. Rare Met. Mater. Eng., 2006, 35(s2): 25
刘培生. 多孔材料比表面积和孔隙形貌的测定方法 [J]. 稀有金属材料与工程, 2006, 35(S2): 25
9 Meng W Z, Yang S Y. Study on the design Method of the foam material with regular cell structure [J]. Res. Stud. Found. Equip., 2006, (3): 17
孟文哲, 杨思一. 具有规则孔型多孔材料的结构设计方法研究 [J]. 铸造设备研究, 2006, (3): 17
10 Liu W W, He S Y, Huang K, et al. Sound absorption of periodic porous aluminium with controlled pore structures [J]. Chin. J. Mater. Res., 2009, 23: 171
刘伟伟, 何思渊, 黄可等. 孔结构周期调制通孔多孔铝合金及其吸声性能 [J]. 材料研究学报, 2009, 23: 171
11 Gwon J G, Kim S K, Kim J H. Sound absorption behavior of flexible polyurethane foams with distinct cellular structures [J]. Mater. Des., 2016, 89: 448
12 Lin J H, Chuang Y C, Li T T, et al. Effects of perforation on rigid PU foam plates: Acoustic and mechanical properties [J]. Materials, 2016, 9: 1000
13 Zhang C Q, Kessler M R. Bio-based polyurethane foam made from compatible blends of vegetable-oil-based polyol and petroleum-based polyol [J]. ACS Sustainable Chem. Eng., 2015, 3: 743
14 Liang H Y, Wang S W, He H, et al. Aqueous anionic polyurethane dispersions from castor oil [J]. Ind. Crop Prod., 2018, 122: 182
15 Chen M X, Jiang X L, Li J R, et al. Preparation and sound absorption properties of foamed polyurethane [J] J. Wuhan Univ. Technol., 2019, 41: 541
陈明轩, 江学良, 李菁瑞等. 发泡聚氨酯的制备及吸声性能 [J]. 武汉工程大学学报, 2019, 41: 541
16 Gholami M S, Doutres O, Atalla N. Effect of variability in microgeometry of polyurethane foams on their macroscopic acoustic performance [A]. Inter-noise & Noise-con Congress & Conference Proceedings [C]. Providence, Rhode Island: Institute of Noise Control Engineering, 2016: 872
17 Atalla Y, Fu J, Atalla N, et al. Study of the effects of processing parameters on the sound absorption of open-cell microcellular polymeric foams [J]. Noise Control Eng. J., 2010, 58: 18
18 Lee J, Kim G H, Ha C S. Sound absorption properties of polyurethane/nano-silica nanocomposite foams [J]. J. Appl. Polym. Sci., 2012, 123: 2384
19 Geng J L, Wang C P, Zhu H L, et al. Effect of the carbonyl iron particles on acoustic absorption properties of magnetic polyurethane foam [A]. Proceedings Volume 10596, Behavior and Mechanics of Multifunctional Materials and Composites XII [C]. Denver, United States: SPIE, 2018: 105961W
20 Li T T, Zhang X, Wang H Y, et al. Sound absorption and compressive property of PU foam-filled composite sandwiches: Effects of needle-punched fabric structure, porous structure, and fabric-foam interface [J]. Polym. Adv. Technol., 2020, 31: 451
21 Jiang X L, Yang Z, Wang Z J, et al. Preparation and sound absorption properties of a barium Titanate/Nitrile butadiene rubber-polyurethane foam composite with multilayered structure [J]. Materials, 2018, 11: 474
22 He L. Acoustics Theory and Engineering Applications [M]. Beijing: Science Press, 2006
何琳. 声学理论与工程应用 [M]. 北京: 科学出版社, 2006
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[8] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
No Suggested Reading articles found!