Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (8): 597-605    DOI: 10.11901/1005.3093.2020.404
ARTICLES Current Issue | Archive | Adv Search |
Comparision of Structure and Performance for Foamed Stainless Steels 410L and 430L
ZHANG Guangcheng, YUAN Tianxiang, MA Delin, ZHOU Ping, GUO Chaoqun, ZHOU Yun(), ZUO Xiaoqing
Kunming University of Science Technology, Faculty of Materials Science and Engineering, Kunming 650093, China
Cite this article: 

ZHANG Guangcheng, YUAN Tianxiang, MA Delin, ZHOU Ping, GUO Chaoqun, ZHOU Yun, ZUO Xiaoqing. Comparision of Structure and Performance for Foamed Stainless Steels 410L and 430L. Chinese Journal of Materials Research, 2021, 35(8): 597-605.

Download:  HTML  PDF(15128KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Foamed stainless steels 410L and 430L with different porosity were made respectively with powders of the two steels as raw material and CaCl2 as pore-forming agent via a two-step process i.e., powder metallurgy sintering and post dissolution. Then their microstructure and properties were comparatively assessed. The results show that the two foamed steels of 410L and 430L are composed of merely α-Fe phase. More serious oxidation can be observed on the walls of the as fresh made 410 steel foams rather than that of 430 SS steel foams. The 430L stainless steel foam presents higher corrosion resistance than the 410L stainless steel foam. The compression test results reveal that the yield stress of 410L steel foams with porosity of 73%~83% is in the range of 22.06~5.45 MPa, the yield stress of 430L steel foams with porosity of 72%~83% is in the range of 56.77~10.44 MPa, hence, the compressive strength of 430L steel foam is 2~3 times that of 410L steel foam. Besides, when the strain reaches 50%, 410L steel foams with porosity of 73%~83% have 6.12~2.90 MJ/m3 energy absorption value per unit volume, while the corresponding value for 430L steel foams with porosity of 72%~83% is 40.35~8.25 MJ/m3. Therefore, the energy absorption value per unit volume of 430L steel foams is about 3~5 times that of 410L steel foams.

Key words:  metallic materials      400 steel foam      sintering-dissolution      porosity      yield stress      energy absorption     
Received:  27 September 2020     
ZTFLH:  TB34  
Fund: National Natural Science Foundation of China(51861020);Innovation and Entrepreneurship Training Program for College Students(201710674207)
About author:  ZHOU Yun, Tel: 15368066816, E-mail: zyuncrystal@qq.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.404     OR     https://www.cjmr.org/EN/Y2021/V35/I8/597

MaterialsCSiMnPSCrFe
410L≤0.03≤1.00≤2.0≤0.04≤0.03511~13Bal.
430L≤0.03≤1.00≤2.0≤0.04≤0.03516~18Bal.
Table 1  Composition of stainless steel powder (mass fraction, %)
Fig.1  Metallographic micrographs of stainless steel 410L (a, b) and 430L (c, d)
Fig.2  SEM of matrix structure of stainless steel 410L (a, b) and 430L (c, d)
Fig.3  XRD spectrum of matrix structure of stainless steel
Fig.4  SEM photos and EDS of cell surface of 410L sintered sample (a, b) SEM photos; (c) EDS of mark 1; (d) EDS of mark 2; (e) EDS of mark 3
Fig.5  SEM photos and EDS pattern of cell surface of 430L sintered sample (a, b) SEM photos; (c) EDS of mark 1; (d) EDS of mark 2; (e) EDS of mark 3
Fig.6  Quasi-static axial compression deformation diagram of steel foams 410L (a) and 430L (b)
Fig.7  Stress-strain curves of steel foams specimens 410L (a) and 430L (b)
Porosity/%68717781
Elastic modulus/GPa2.812.701.210.94
Table 2  Elastic modulus of 410L steel foam
Porosity/%63697378
Elastic modulus/GPa5.784.283.061.64
Table 3  Elastic modulus of 430L steel foam
Fig.8  Energy absorption curves of steel foams 410L (a) and 430L (b)
1 Zhang S W. Foam metal research and application progress [J]. Powd. Metall. Technol., 2016, 34: 222
张士卫. 泡沫金属的研究与应用进展 [J]. 粉末冶金技术, 2016, 34: 222
2 Luo G, Xue P. Investigations on the mechanism and behavior of dynamic energy absorption of metal foam [J]. Lat. Am. J. Solids Struct., 2018, 15: 47
3 Liu Y, He X C, Deng C. Self-piercing riveting of metal foam sandwich structures [J]. Mater. Trans., 2017, 58: 1532
4 Liu P S, Qing H B. A spherical-pore foamed titanium alloy with high porosity [J]. Chin. J. Mater. Res., 2015, 29: 346
刘培生, 顷淮斌. 一种具有球形孔隙的高孔率泡沫钛合金 [J]. 材料研究学报, 2015, 29: 346
5 Novak N, Vesenjak M, Duarte I, et al. Compressive behaviour of closed-cell aluminium foam at different strain rates [J]. Materials, 2019, 12: 4108
6 Liu P S, Xu X B, Sun J X, et al. Sound absorption property of vacuum sintered 304 stainless steel foam [J]. Chin. J. Nonferrous Met., 2017, 27: 2560
刘培生, 徐新邦, 孙进兴等. 真空烧结泡沫304不锈钢吸声性能 [J]. 中国有色金属学报, 2017, 27: 2560
7 Avalle M, Belingardi G. A mechanical model of cellular solids for energy absorption [J]. Adv. Eng. Mater., 2019, 21: 1800457
8 Sazegaran H, Hojati M. Effects of copper content on microstructure and mechanical properties of open-cell steel foams [J]. Int. J. Miner. Metall. Mater., 2019, 26: 588
9 Zhang X W, Wang Y L, Chen L, et al. Mechanical properties of porous metal materials and their dependence on geometric parameters [J]. J. Mater. Eng., 2014, (2): 55
张晓伟, 王彦莉, 陈利等. 多孔金属介质的力学性能及其参数依赖性研究 [J]. 材料工程, 2014, (2): 55
10 Bekoz N, Oktay E. High temperature mechanical properties of low alloy steel foams produced by powder metallurgy [J]. Mater. Des., 2014, 53: 482
11 Smith B H, Szyniszewski S, Hajjar J F, et al. Steel foam for structures: A review of applications, manufacturing and material properties[J]. J. Constr. Steel Res., 2012, 71: 1
12 He S Y, Gong X L, He D P. Effect of through-hole on porous aluminum alloy compressive mechanical properties [J]. Chin. J. Mater. Res., 2009, 23: 380
何思渊, 龚晓路, 何德坪. 多孔铝合金连通孔对压缩性能的影响 [J]. 材料研究学报, 2009, 23: 380
13 Caiazzo F, Campanelli S L, Cardaropoli F, et al. Manufacturing and characterization of similar to foam steel components processed through selective laser melting [J]. Int. J. Adv. Manuf. Technol., 2017, 92: 2121
14 Bekoz N, Oktay E. Mechanical properties of low alloy steel foams: Dependency on porosity and pore size [J]. Mater. Sci. Eng., 2013, 576A: 82
15 Yang Q Z, Yu B, Zhao F X, et al. Research progress of steel foam by casting method [J]. China Foundry, 2011, 60: 851
杨全占, 于波, 赵芳欣等. 铸造法制备泡沫钢研究进展 [J]. 铸造, 2011, 60: 851
16 Wang H, Zhou X Y, Li C L, et al. Vacuum sintering of stainless steel foam with 3-D open-cell network structure [J]. J. Central South Univ. (Sci. Technol.), 2011, 42: 2178
王辉, 周向阳, 李昌林等. 真空烧结制备三维通孔不锈钢泡沫材料 [J]. 中南大学学报(自然科学版), 2011, 42: 2178
17 Xu X B, Liu P S, Chen G F, et al. Sound absorption performance of highly porous stainless steel foam with reticular structure [J]. Met. Mater. Int, 2020, (12): 1
18 Kayaa C, Fleck C. Deformation behavior of open-cell stainless steel foams [J]. Mater. Sci. Eng., 2014, 615A: 447-456
19 Xie F X, He X B, Cao S L, et al. Structural and mechanical characteristics of porous 316L stainless steel fabricated by indirect selective laser sintering [J]. J. Mater. Process. Technol., 2013, 213: 838
20 Bakan H I. A novel water leaching and sintering process for manufacturing highly porous stainless steel [J]. Scr. Mater., 2006, 55: 203
21 Mondal D P, Jain H, Das S, et al. Stainless steel foams made through powder metallurgy route using NH4HCO3 as space holder [J]. Mater. Des., 2015, 88: 430
22 Hu L, Li L J, Peng H L, et al. Fabrication and properties of powder metallurgical porous high nitrogen austenitic stainless steel [J]. Chin. J. Mater. Res., 2019, 33: 345
胡玲, 李烈军, 彭翰林等. 粉末冶金多孔高氮奥氏体不锈钢的制备及性能 [J]. 材料研究学报, 2019, 33: 345
23 Mirzaei M, Paydar M H. Fabrication and characterization of core-shell density-graded 316L stainless steel porous structure [J]. J. Mater. Eng. Perform., 2018, 28: 221
24 Guo K S, Li M C, Gong Q, et al. Experimental investigation on steel foams fabricated by sintering-dissolution process [J]. Mater. Manuf. Processes, 2016, 31: 1597
25 Sun Y D, Zhou Y, Wang T Y, et al. Preparation process, compression and energy absorption properties of steel foams [J]. Mater. Sci. Technol., 2019, 27(5): 44
孙亚东, 周芸, 汪天尧等. 泡沫钢的制备及压缩吸能特性 [J]. 材料科学与工艺, 2019, 27(5): 44
26 Callister W D. Fundamentals of Materials Science and Engineering: An Interactive e.Text [M]. 5th ed. New York: John Wiley & Sons, Inc., 2001
27 Degischer H P, Kriszt B. Handbook of Cellular Metals: Production, Processing, Application [M]. Weinheim, Germany: Wiley-VCH, 2002
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!