Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (8): 591-596    DOI: 10.11901/1005.3093.2020.292
ARTICLES Current Issue | Archive | Adv Search |
Synthesis and Upconversion Luminescence of Ultrafine (Lu0.5In0.5)2O3:Tm3+,Yb3+ Powders
FENG Kai1,2, L Guangzhe3, L Bin1,2()
1.School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
2.Key Laboratory of Photoelectric Detection Materials and Devices of Zhejiang Province, Ningbo 315211, China
3.School of Metallurgy Engineering, Liaoning Institute of Science and Technology, Benxi 117004, China
Cite this article: 

FENG Kai, L Guangzhe, L Bin. Synthesis and Upconversion Luminescence of Ultrafine (Lu0.5In0.5)2O3:Tm3+,Yb3+ Powders. Chinese Journal of Materials Research, 2021, 35(8): 591-596.

Download:  HTML  PDF(4260KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The quaternary-system Lu/In/Tm/Yb carbonat-recursors were synthesized by chemical precipitation route, and then were calcinated at 1100℃ to acquire a series of sphere-like [(Lu0.5In0.5)0.999-x-Tm0.001Ybx]2O3 (x=0~0.05) solid solution-oxides with average particle size of about 110 nm. Under 980 nm laser excitation the oxide powder exhibits strong bluish emission at about 450∼510 nm and weak red emission at about 650~670 nm arising from 1D23H6,3F4 and 1G43F4 transitions of Tm3+, respectively. Their upconversion mechanisms may be ascribed to the above two-phonon processes. The color of the emitted light on the 1931CIE color coordinates gradually move from green (0.31, 0.54) to blue (0.01, 0.19) colors with the increasing Yb3+ concentration. Yb3+ co-doping effectively enhances the luminescence intensity of Tm3+ and its optimum content is 2.5%. The fluorescence lifetimes of the oxide powder were measured to be about 0.84 for the 474 nm blue emission and 0.97 ms for the 654 nm red emission.

Key words:  inorganic nonmetallic materials      upconversion      liquid phase method      sesquioxide      fluorescent powder      energy transfer     
Received:  15 July 2020     
ZTFLH:  O482.31  
Fund: National Natural Science Foundation of China(51702171);Qianjiang Talent Program of Zhejiang Province(QJD1702017);Natural Science Foundation of Ningbo(2019A610052)
About author:  L Bin, Tel: 18352928660, E-mail: lvbin@nbu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.292     OR     https://www.cjmr.org/EN/Y2021/V35/I8/591

Fig.1  XRD patterns of the [(Lu0.5In0.5)0.999-xTm0.001Ybx]2O3 precursor and its calcination products at 1100℃ (a), and FTIR spectrum of the x=0 precursor (b)
Fig.2  FE-SEM micrographs showing morphologies of the [(Lu0.5In0.5)0.949Tm0.001Yb0.05] precursor (a) and oxide sintered at 1100℃ (b)
Fig.3  Upconversion spectra of oxide samples as a function of Yb3+ concentration under 980 nm LD excitation (a) and CIE chromaticity diagrams (b)
Fig.4  Upconversion spectra of oxide powders under different LD output powers (a) and the linear fitting between the logarithm of luminescence intensity and the logarithm of excitation intensity (b)
Fig.5  Upconversion processes of the oxide solid solution powder
Fig.6  Fluorescence decay behaviors of the sample doped with 2.5% Yb3+ for the 474 (a) and 654 nm (b) emissions
1 Yi G S, Sun B Q, Yang F Z, et al. Synthesis and characterization of highly-efficiency nanocrystal up-conversion phosphors: ytterbium and erbium codoped lanthanum molybdate [J]. Chem. Mater., 2002, 14(7): 2910
2 Pollnau M, Gamelin D R, Luthi S R, et al. Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems [J]. Phys. Rev. B, 2000, 61(5): 3337
3 Feng H, Zhuang L C, Huang S M, et al. Correlation of afterglow, trap states and site preference in RE2O3:1% Eu (RE=Lu, Y, Sc) single crystal scintillators [J]. J. Lumin., 2019, 29: 232
4 Tian Y, Xu R G, Guo Y Y, et al. Mid-infrared luminescence and energy transfer of Tm3+/Yb3+ doped fluorophosphates glass [J]. Mater. Chem. Phys., 2012, 133(1): 340
5 An L Q, Zhang J, Liu M, et al. Upconversion luminescence of Tm3+ and Yb3+-codoped lutetium oxide nanopowders [J]. J. Alloy. Compd., 2008, 451(12): 538
6 Vetron F, Mahalingam V, Capobianco J A, et al. Near-infrared-to-blue upconversion in colloidal BaYF5:Tm3+,Yb3+ nanocrystals [J]. Chem Mater., 2009, 21(9): 1847
7 Xiang G T, Liu X T, Xia Q, et al. Upconversion luminescence properties of β-NaYF4:Yb3+/Er3+@β-NaYF4:Yb3+ [J]. J. Chin. Lumin., 2020, 41(6): 679
相国涛, 刘小桐, 夏清等. β-NaYF4:Yb3+/Er3+@β-NaYF4:Yb3+的上转换发光特性 [J]. 发光学报, 2020, 41(6): 679
8 Zorenko T, Gorbenk V, Safronova N, et al. Comparative study of the luminescent properties of oxide compounds under synchrotron radiation excitation: Lu2O3:Eu nanopowders, ceramics and films [J]. J. Lumin., 2018, 199: 461
9 Cheng L H, Cao W H, Xia T, et al. Up-conversion luminescence of fluoro-oxide glass co-doped with Er3+ and Yb3+ under 980 nm excitation [J]. J. Chin. Lumin., 2004, 25(4): 355
程丽红, 曹望和, 夏天等. 980 nm激光激发下Er3+和Yb3+共掺杂氟氧玻璃的上转换发光 [J]. 发光学报, 2004, 25(4): 355
10 Valiev D, Polisadova E, Stepanov S, et al. Luminescence spectroscopy of scintillating glasses doped with Tb3+/Ce3+ with different concentrations of cerium under photo- and electron excitation [J]. J. Lumin., 2015, 162: 128
11 Morozova L V, Tikhonov P A, Glushkova V B, Physicochemical investigation of the In2O3-HfO2 system in the indium oxide-rich region [J]. Inorg. Mater., 1991, 27: 217
12 Singh V, Seshadri M, Singh N, et al. Optical characterization, absorption and upconversion luminescence in Er3+ and Er3+/Yb3+ doped In2O3 phosphor [J]. J. Lumin., 2016, 176: 347
13 Hu C, Feng X Q, Li J, et al. Role of Y admixture in (Lu1-xYx)3-Al5O12:Pr ceramic scintillators free of host luminescence [J]. Phys. Rev. Appl., 2016, 6(6): 064026
14 Liu S P, Mares J S, Feng X Q, et al. Towards bright and fast Lu3Al5O12:Ce, Mg optical ceramics scintillators [J]. Adv. Opt. Mater., 2016, 4(5): 731
15 Cai S, Lu B, Chen H B, et al. Homogeneous (Lu1-xInx)2O3 (x=0~1) solid solutions: controlled synthesis, structure features and optical properties [J]. Powder Technol., 2017, 1317: 224
16 Lu B, Cheng H M, Xu X X, et al. Preparation and characterization of transparent magneto-optical Ho2O3 ceramics [J]. J. Am. Ceram. Soc., 2019, 102(1): 118
17 Lu B, Li J G, Suzuki T S, et al. Controlled synthesis of layered rare-earth hydroxide nanosheets leading to highly transparent (Y0.95Eu0.05)2O3 ceramics [J]. J. Am. Ceram. Soc., 2015, 98(5): 1413
18 Lu B, Cheng P, Chen H B, et al. Anion-exchange behavior and optical properties of ternary Y/Gd/Eu layered rare-earth hydroxides [J]. Rare Met. Mater. Eng., 2019, 48(2): 559
吕滨, 程鹏, 陈红兵等. Y/Gd/Eu三元稀土层状化合物的离子交换行为与光学性能 [J]. 稀有金属材料与工程, 2019, 48(2): 559
19 Li Z, Wu K Y, Wang Y F, et al. Hydrothermal preparation and photoluminescent property of SrMoO4:Pr3+ red phosphors [J]. Chinese Journal of Materials Research, 2017, 31(4): 275
李兆, 吴坤尧, 王永锋等. SrMoO4:Pr3+红色荧光粉的水热合成及光致发光 [J]. 材料研究学报, 2017, 31(4): 275
20 Dwaraka V C S, Babu P, Martin I R, et al. Near-infrared and upconversion luminescence of Tm3+ and Tm3+/Yb3+-doped oxyfluorosilicate glasses [J]. J. Non-Cryst. Solids, 2019, 507: 1
21 Pollnau M, Gamelin D R, Luthi S R, et al. Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems [J]. Phys. Rev. B, 2000, 61(5): 3337
22 Ledemi Y, Trudel A A, Rivera V A G, et al. White light and multicolor emission tuning in triply doped Yb3+/Tm3+/Er3+ novel fluoro-phosphate transparent glass-ceramics [J]. J. Mater. Chem. C, 2014, 2(25): 5046
23 Lu B, Li J G, Sun X D, et al. Fabrication and characterization of transparent (Y0.98-xTb0.02Eux)2O3 ceramics with color-tailorable emission [J]. J. Am. Ceram. Soc., 2015, 98(12): 3877
[1] YU Chao, XING Guangchao, WU Zhengmin, DONG Bo, DING Jun, DI Jinghui, ZHU Hongxi, DENG Chengji. Effect of Submicron Al2O3 Addition on Sintering Process of Recrystallized Silicon Carbide[J]. 材料研究学报, 2022, 36(9): 679-686.
[2] TAN Chong, LI Yuanyuan, WANG Huanhuan, LI Junsheng, XIA Zhi, ZUO Jinlong, YAO Lin. Preparation of g-C3N4/Ag/TiO2 NTs and Photocatalytic Degradation of Ceftazidine[J]. 材料研究学报, 2022, 36(5): 392-400.
[3] OUYANG Jie, LI Xue, ZHU Yuxin, CAO Fu, CUI Yanjuan. Enhanced Photocatalytic Hydrogen Production and Carbon Dioxide Reduction[J]. 材料研究学报, 2022, 36(2): 152-160.
[4] ZENG Renfen, JIANG Xiangping, CHEN Chao, HUANG Xiaokun, NIE Xin, YE Fen. Effects of Er3+-doping on Performance of Bi3Ti1.5W0.5O9-Bi4Ti3O12 Intergrowth Lead-free Piezoceramics[J]. 材料研究学报, 2022, 36(10): 760-768.
[5] SONG Yuehong, DAI Weili, XU Hui, ZHAO Jingzhe. Preparation and Photocatalytic Properties of g-C3N4/Bi12O17Cl2 Composites[J]. 材料研究学报, 2021, 35(12): 911-917.
[6] SONG Guihong, LI Xiuyu, LI Guipeng, DU Hao, HU Fang. Thermoelectric Properties of Mg-rich Mg3Bi2 Films Prepared by Magnetron Sputtering[J]. 材料研究学报, 2021, 35(11): 835-842.
[7] ZHOU Shuyu,JIN Xiaozhe,LIU jia,TIAN Ruixue,WU Aimin,HUANG Hao. Storage and Transport Properties of Sodium-ions of Carbon-constraint NiS2 Nanostructure as Cathode for Na-S Batteries[J]. 材料研究学报, 2020, 34(3): 191-197.
[8] WU Qiaofeng, ZHANG Fu, YU Yue, ZHANG Meng, YU Hua, FAN Shuanshi. Research Progress on Stability of CsPbI2Br Inorganic Perovskite Solar Cells[J]. 材料研究学报, 2020, 34(11): 811-821.
[9] TANG Yang. Band Gap Energy and Near Band Edge Emission Blue Shifts of ZnO Nanorods Prepared by Electrodeposition[J]. 材料研究学报, 2020, 34(11): 875-880.
[10] Li YANG,Zhiyuan TANG,Tengteng LI,Qiwei DUAN,Jiali HU,Sufang ZHANG,Zhaoqiang ZHENG. Preparation and Photovoltaic Performance of Novel Ruthenium Complex and Its Self-assembly Membrane[J]. 材料研究学报, 2019, 33(8): 614-620.
[11] Chuanxiang ZHANG,Zhongyi JIANG,Yuming DAI,Xiancong HE,Yuan CONG,Shuaishuai ZHU. Preparation and Supercapacitance of C-ZIF-8@AC Composites Electrode Material[J]. 材料研究学报, 2019, 33(5): 352-360.
[12] Yongjie CUI,Yong LIU,Shuai PENG,Keqing HAN,Muhuo YU. Preparation and Property of SiBN Ternary Ceramic Fibers Prepared by Polyborosilazane-Derived Method[J]. 材料研究学报, 2019, 33(2): 155-160.
[13] Hongxia JING, Mingxing GAO, Xingmei WANG, Wangjun PEI, Weizhou JIAO. Preparation and Properties of Ce-doped Cobalt Ferrite[J]. 材料研究学报, 2018, 32(6): 449-454.
[14] Aijun LI, Xiuyun CHUAN, Dubin HUANG, Xi CAO. KOH Activation of Diatomite-templated Carbon and Its Electrochemical Property in Supercapacitor[J]. 材料研究学报, 2017, 31(5): 321-328.
[15] Zhigang YANG,Jianbo YU,Chuanjun LI,Kang DENG,Zhongming REN,Yunbo ZHONG,Qiuliang WANG,Yinming DAI,Hui WANG. Effect of Sintering Conditions on Texture Formation of Si3N4 Ceramic Shaped up in a Strong Magnetic Field[J]. 材料研究学报, 2015, 29(5): 371-376.
No Suggested Reading articles found!