Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (9): 712-720    DOI: 10.11901/1005.3093.2020.402
ARTICLES Current Issue | Archive | Adv Search |
Effect of Al Content on Properties of CrFeNiAlxSi High Entropy Alloy
LI Gang1,2(), WEN Ying1, YU Zhongmin1, LIU Jian1, XIONG Zilian1
1.College of Mines, Liaoning Technical University, Fuxin, 123000, China
2.Yingkou Institute of Technology, Yingkou 115000, China
Cite this article: 

LI Gang, WEN Ying, YU Zhongmin, LIU Jian, XIONG Zilian. Effect of Al Content on Properties of CrFeNiAlxSi High Entropy Alloy. Chinese Journal of Materials Research, 2021, 35(9): 712-720.

Download:  HTML  PDF(3757KB)  Mobile PDF(7962KB)
Export:  BibTeX | EndNote (RIS)      
Abstract  

CrFeNiAlxSi high entropy alloys were prepared via laser sintering with Al, Cr, Fe, Ni, Si and natural ferrochrome ore powder as raw materials. The effect of Al content on the phase structure, microstructure, density and porosity, microhardness, wear resistance and high temperature oxidation resistance of CrFeNiAlxSi high entropy alloys were investigated. The results show that CrFeNiAlxSi (x=0.2, 0.4, 0.6, 0.8, 1.0) high-entropy alloys composed of BCC+FCC phase. With the increase of Al content, the amount of FCC phase decreases gradually; when x=0.6, the hardness of the alloy reaches 813.3HV and the density of the alloy decreases and the porosity increases; when x=0.2, the density of the alloy is 4.21 g·cm-³ and the porosity is 26.46%; whilst when x=0.6, the wear resistance of the alloy is the best with wear rate of 69.50 mg·cm-²; Furthermore, the high temperature oxidation resistance of the alloy was obviously improved with the increasing Al-content.

Key words:  metallic materials      high entropy-alloy      phase structure      hardness      high temperature oxidation resistance     
Received:  27 September 2020     
ZTFLH:  TG113  
Fund: National Natural Science Foundation of China(51805235);Program for Innovative Research Team in Yingkou Institute of Technology(TD202001);High-level Talents Research Project of Yingkou Institute of Technology(YJRC202014)
About author:  LI Gang, Tel: 13941819785, E-mail: stars2387@vip.sina.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.402     OR     https://www.cjmr.org/EN/Y2021/V35/I9/712

PowderPurityGranularity/μmType and content of impurities
Fe≥98.35%

C≤0.05%, S≤0.018%, Si≤0.13%, P≤0.019%, O≤0.35%,

Mn≤0.30%, Acid insoluble substance≤0.35%

Al≥99.0%Fe≤0.6%, Si≤0.3%, Cu≤0.05%, N≤0.01%
Cr≥99.5%74Total amount of impurity cations≤0.01%
Ni≥99.5%Total amount of impurity cations≤0.01%
Si≥99.0%Fe≤0.4%, Ca≤0.1%, Al≤0.02%
Table 1  Experimental powder material and parameters (mass fraction, %)
Element typesCrFeNiAlSi
Melting temperature/℃1857153514536601414
Atomic radius/nm0.1250.1241.250.1430.117
Valence electron concentration681034
Electronegativity1.661.831.911.611.90
Table 2  Basic Physical Parameters of Elements
Element typesCrFeNiAlSi
Cr--1-7-10-37
Fe---2-11-35
Ni----22-40
Al-----19
Si-----
Table 3  Enthalpy of mixing between alloying elements (kJ/mol)
Mole content

ΔSconf

/J·(K·mol)-1

ΔHmix

/kJ·mol-1

δ

/%

ΔχVEC
0.21.512-30.4754.3930.10846.808
0.41.565-30.2695.3730.11406.629
0.61.591-29.9766.0420.11836.466
0.81.605-29.7276.5310.12156.325
1.01.609-29.4406.8840.12426.200
Table 4  Phase stability parameters of CrFeNiAlxSi high entropy alloy
Fig.1  XRD curves of CrFeNiAlxSi high-entropy alloy
CrFeNiAl0.2SiCrFeNiAl0.4SiCrFeNiAl0.6SiCrFeNiAl0.8SiCrFeNiAl1.0Si
BCC43.1747.9554.6469.6275.71
FCC56.8352.0545.3630.3824.29
Table 5  Phase volume fraction of CrFeNiAlxSi high entropy alloy (volume fraction, %)
Fig.2  Microstructure of CrFeNiAlxSi high-entropy alloy (a) x=0.2, (b) x=0.4, (c) x=0.6, (d) x=0.8, (e) x=1.0
Fig.3  Microscopic morphology of CrFeNiAlSi alloy under SEM
ZoneCrystal structureAlCrFeNiSi
Nominal content-2020202020
ABCC30.2030.698.3020.4810.33
BBCC28.5131.919.3720.0910.12
CFCC11.528.8531.8429.7718.02
Table 6  Element content in different zone of CrFeNiAlSi alloy (atomic fraction, %)
Fig.4  Density and porosity of CrFeNiAlxSi high-entropy alloy
Fig.5  Microhardness and wear rate of CrFeNiAlxSi high-entropy alloy
Fig.6  Wear microstructure of CrFeNiAlxSi high-entropy alloy (a) x=0.2, (b) x=0.6, (c) x=1.0
Fig.7  Weight gain per unit mass of CrFeNiAlxSi alloy in 800℃
1 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
2 Zhang W R, Liaw P K, Zhang Y. Science and technology in high-entropy alloys [J]. Sci. China Mater., 2018, 61: 2
3 Zhang Y, Chen M B, Yang X, et al. Advanced Technology in High-entropy Alloys [M]. Beijing: Chemical Industry Press, 2019
张勇, 陈明彪, 杨潇等. 先进高熵合金技术 [M]. 北京: 化学工业出版社, 2019
4 Li W, Liu P, Liaw P K. Microstructures and properties of high-entropy alloy films and coatings: a review [J]. Mater. Res. Lett., 2018, 6: 199
5 Guo W Q, Jing S, Lu W J. Dislocation-induced breakthrough of strength and ductility trade-off in a non-equiatomic high-entropy alloy [J]. Acta Mater., 2020, 185: 45
6 Ananiadis E, Lentzaris K, Georgatis E, et al. AlNiCrFeMn equiatomic high entropy alloy: A further insight in its microstructural evolution, mechanical and surface degradation response [J]. Met. Mater. Int., 2020, 26: 793
7 Ding Q Q, Zhang Y, Chen X, et al. Tuning element distribution, structure and properties by composition in high-entropy alloys [J]. Nature, 2019, 574: 223
8 Yang H X, Li J S, Guo T, et al. Fully recrystallized Al0.5CoCrFeNi high-entropy alloy strengthened by nanoscale precipitates [J]. Met. Mater. Int., 2019, 25: 1145
9 Cao L G, Zhu L, Zhang L L, et al. Microstructure evolution and mechanical properties of rapid solidified AlCoCrFeNi2.1 eutectic high entropy alloy [J]. Chin. J. Mater. Res., 2019, 33: 650
曹雷刚, 朱琳, 张磊磊等. 快速凝固AlCoCrFeNi2.1共晶高熵合金的微观组织演变和力学性能 [J]. 材料研究学报, 2019, 33: 650
10 Wang L, Qiao J W, Ma S G, et al. Mechanical response and deformation behavior of Al0.6CoCrFeNi high-entropy alloys upon dynamic loading [J]. Mater. Sci. Eng., 2018, 727A: 727
11 Chen G, Wang L, Yang J, et al. Mechanical properties and deformation mechanisms of Al0.1CoCrFeNi high-entropy alloys [J]. J. Mater. Eng., 2019, 47: 106
陈刚, 王璐, 杨静等. Al0.1CoCrFeNi高熵合金的力学性能和变形机理 [J]. 材料工程, 2019, 47: 106
12 Moravcik I, Gamanov S, Moravcikova-Gouvea L, et al. Influence of Ti on the tensile properties of the high-strength powder metallurgy high entropy alloys [J]. Materials, 2020, 13: 578
13 Jawaharram G S, Barr C M, Monterrosa A M, et al. Irradiation induced creep in nanocrystalline high entropy alloys [J]. Acta Mater., 2020, 182: 68
14 Qi P B, Liang X B, Tong Y G, et al. Effect of milling time on preparation of NbMoTaW high entropy alloy powder by mechanical alloying [J]. Rare Mat. Mater. Eng., 2019, 48: 2623
漆陪部, 梁秀兵, 仝永刚等. 球磨时间对机械合金化制备NbMoTaW高熵合金粉末的影响 [J]. 稀有金属材料与工程, 2019, 48: 2623
15 Feng G J, Li Z R, Feng S C, et al. Effect of Ti-Al content on microstructure and mechanical properties of Cf/Al and TiAl joint by laser ignited self-propagating high-temperature synthesis [J]. Trans. Nonferrous Met. Soc. China, 2015, 25: 1468
16 An R, Tian Y H, Kong L C, et al. Laser-ignited self-propagating behavior of self-supporting nano-scaled Ti/Al multilayer films [J]. Acta Metall. Sin., 2014, 50: 937
安荣, 田艳红, 孔令超等. 自支撑Ti/Al纳米多层膜激光诱发自蔓延行为 [J]. 金属学报, 2014, 50: 937
17 Li G, Zhang J B, Liu J, et al. Microstructure and properties of high entropy alloy composite coating prepared by laser with raw chromite powder [J]. Surf. Technol., 2019, 48: 228
李刚, 张井波, 刘囝等. 铬铁原矿粉激光制备高熵合金复合涂层的组织与性能 [J]. 表面技术, 2019, 48: 228
18 Wang J, Huang W G. Microstructure and mechanical properties of CrMoVNbFex high-entropy alloys [J]. Chin. J. Mater. Res., 2016, 30: 609
王江, 黄维刚. CrMoVNbFex高熵合金微观组织结构与力学性能 [J]. 材料研究学报, 2016, 30: 609
19 Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, 375-377A: 213
20 Zhang Y, Zhou Y J, Lin J P, et al. Solid-solution phase formation rules for multi-component alloys [J]. Adv. Eng. Mater., 2008, 10: 534
21 Takeuchi A, Inoue A. Quantitative evaluation of critical cooling rate for metallic glasses [J]. Mater. Sci. Eng., 2001, 304-306A: 446
22 Yang X, Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys [J]. Mater. Chem. Phys., 2012, 132: 233
23 Zhang Y, Lu Z P, Ma S G, et al. Guidelines in predicting phase formation of high-entropy alloys [J]. MRS Commun., 2014, 4: 57
24 Fang S S, Xiao X S, Xia L, et al. Relationship between the widths of supercooled liquid regions and bond parameters of Mg-based bulk metallic glasses [J]. J. Non-Cryst. Solids, 2003, 321: 120
25 Guo S, Liu C T. Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase [J]. Prog. Nat. Sci.: Mater. Int., 2011, 21: 433
26 Smith W F, Hashemi J. Foundations of Materials Science and Engineering [M]. Beijing: Machine Press, 2011
27 Guo S, Ng C, Lu J, et al. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys [J]. J. Appl. Phys., 2011, 109: 103505
28 Yang T F, Xia S Q, Liu S, et al. Effects of Al addition on microstructure and mechanical properties of AlxCoCrFeNi High-entropy alloy [J]. Mater. Sci. Eng., 2015, 648A: 15
29 Zhang Z, Yu Z K, Cheng H, et al. Effect of Al content on microstructure and nanoindentation creep behaviors of AlxFeCoNiCu high-entropy alloys [J]. Hot Work. Technol., 2019, 48(12): 62
张正, 于忠卡, 程皓等. Al含量对AlxFeCoNiCu高熵合金结构和纳米压痕蠕变行为的影响 [J]. 热加工工艺, 2019, 48(12): 62
30 Bao Y Y, Ji X L, Gu P, et al. Effect of aluminum content on the microstructure and erosion wear resistance of FeCrNiCoCu high-entropy alloy coatings [J]. Tribology, 2017, 37: 421
鲍亚运, 纪秀林, 顾鹏等. Al含量对FeCrNiCoCu高熵合金涂层组织结构及冲蚀性能的影响 [J]. 摩擦学学报, 2017, 37: 421
31 Zhang X, Cui H Z, Wang M L, et al. Effect of Al content on microstructure and corrosion resistance of AlxCoCrFeNi high entropy alloys [J]. Trans. Mater. Heat Treat., 2018, 39(12): 29
张雪, 崔洪芝, 王明亮等. Al含量对AlxCoCrFeNi系高熵合金组织和耐蚀性能的影响 [J]. 材料热处理学报, 2018, 39(12): 29
32 Zhang Y, Zhou Y J. Solid solution formation criteria for high entropy alloys [J]. Mater. Sci. Forum, 2007, 561-565: 1337
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!