Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (9): 703-711    DOI: 10.11901/1005.3093.2020.388
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Performance of Graphite/TiO2 Composite Photocatalyst
HOU Jing1,2, YANG Peizhi1(), ZHENG Qinhong1, YANG Wen1, ZHOU Qihang1, LI Xueming1
1.Key Laboratory of Renewable Energy Advanced and Manufacturing Technology, Ministry of Education, Yunnan Normal University, Kunming 650500, China
2.Panzhihua University, Panzhihua 617000, China
Cite this article: 

HOU Jing, YANG Peizhi, ZHENG Qinhong, YANG Wen, ZHOU Qihang, LI Xueming. Preparation and Performance of Graphite/TiO2 Composite Photocatalyst. Chinese Journal of Materials Research, 2021, 35(9): 703-711.

Download:  HTML  PDF(19428KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The composite photocatalyst of graphite/TiO2 was prepared by high-energy ball milling with graphite and pure TiO2 as the raw materials. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and ultraviolet diffuse reflectance (DRS). The effect of graphite addition and ball milling time on the photocatalytic activity of the prepared composite photocatalyst was investigated by comparison of their degradation efficiencies for the methyl orange as the simulated pollutant. The results show that after ball milling the graphite/TiO2 composite photocatalyst presents an anatase-like X-ray diffraction pattern, the diffraction peak of TiO2(101) plane widened and shifted to the right, the TiO2 particles are irregular spherical around 200 nm, and the graphite uniformly distributed on the TiO2 surface. Because of higher binding energy of TiO2 grains, the defects generated on the surface of the graphite doped TiO2 have significant absorption capacity in the visible light region. The graphite/TiO2 composite photocatalyst with 5 mass% graphite prepared by ball milling for 12 h showed the best photocatalytic degradation effect of methyl orange. After the degradation time of 70 min the degradation removal rate of methyl orange could reach 95.08%, and the reaction rate constant k was 0.043035 min-1, which was 2.64 times that of the pure TiO2.

Key words:  composites      graphite/TiO2      methyl orange      photocatalysis      ball milling     
Received:  14 September 2020     
ZTFLH:  O643  
Fund: National Natural Science Foundation of China(U1802257);Yunnan Provincial Science Foundation(2017FA024);Program for Innovative Research Team (in Science and Technology) in University of Yunnan Province, Seed Funding Project of Panzhihua University Science and Technology Park
About author:  YANG Peizhi, Tel: 13888912788, E-mail: pzhyang@hotmail.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.388     OR     https://www.cjmr.org/EN/Y2021/V35/I9/703

Fig.1  XRD patterns of graphite/TiO2 composite photocatalysts with different graphite contents
Fig.2  XRD pattern of 5% graphite/TiO2 composite photocatalyst with different ball milling time
Fig.3  SEM image of graphite/TiO2 composite photocatalyst with different ball milling time
Fig.4  SEM image of graphite/TiO2 composite photocatalysts with different graphite contents
Fig.5  EDS analysis and element distribution of 5% graphite/TiO2 composite photocatalyst
Fig.6  TEM and HRTEM spectra of 5% grphite/TiO2 composite photocatalyst
Fig.7  XPS spectra of 5% grphite/TiO2 composite photocatalyst
Fig.8  UV-Vis absorption spectrum of graphite/TiO2 composite photocatalyst
Fig.9  Adsorption and photocatalytic degradation of methyl orange by graphite/TiO2 composite photocatalysts with different graphite doping contents
Fig.10  Adsorption and photocatalytic degradation of methyl orange by graphite/TiO2 composite photocatalysts with different ball milling time
Fig.11  Schematic for photocatalytic performance of graphite/ TiO2 composite photocatalyst
1 Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972, 238(5358): 37
2 Ochiai Tsuyoshi, Fujishima Akira. Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purification [J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012, 13(4): 247
3 Nakata Kazuya, Fujishima Akira. TiO2 photocatalysis: Designand applications [J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012, 13(3): 169
4 Liao W J, Yang J W, Zhou H, et al. Electrochemically self-doped TiO2 nanotube arrays for efficient visible light photoelectrocatalytic degradatiaon of contaminants [J]. Electrochimica Acta, 2014, 136(8): 310
5 Kelly P J, West G T, Ratova M, et al. Structural formation and photocatalytic activity of magnetron sputtered titania and doped-titania coatings [J]. Molecules, 2014, 19(10): 16327
6 Zhang L L, Gao H J, Liao Y W. Enhancement of photocatalytic activity of TiO2 with cross-linked poly (amphoteric ionic liquid)[J].Chinese Journal of Materials Research, 2016, 30(4): 307
张娈娈, 高和军, 廖运文. 交联聚两性离子液基材料增强TiO2光催化性能的研究 [J]. 材料研究学报, 2016, 30(4): 307
7 Wang S L, Huo W Y, Xu Z C, et al. Fabrication of films of Co doped TiO2 nanotube array and their photocatalytic reduction performance [J]. Chinese Journal of Materials Research,2020,34(3): 176
王世琦, 霍文燚, 徐正超等. 钴掺杂TiO2纳米管阵列薄膜的制备及其光催化还原性能 [J]. 材料研究学报, 2020, 34(3): 176
8 Sabzi M,Mousavi Anijdan S H. Microstructural analysis and optical properties evaluation of Sol-Gel heterostructured NiO-TiO2 film used for solar panels [J]. Ceramics International, 2019, 45(3): 3250
9 Manibalan G, Murugadoss G, Thangamthu R, et al. Facile synthesis of heterostucture CeO-TiO2 nanocomposites for enhanced electrochemical sensor and solar cell applications [J]. Journal of Alloys and Compounds, 2019, 773: 449
10 Synthesis and photocatalytic performance of heterostructured nano-composite Bi4Ti3O12/TiO2 [J]. Chinese Journal of Materials Research, 2014, 28(7): 503
陈侃松, 黎旸, 田寒等. Bi4Ti3O12/TiO2异质结的制备及其光催化性能 [J]. 材料研究学报, 2014, 28(07): 503
11 Hao D,Jiang C H,Yang Z M,et al. The preparation of N-doped TiO2 and its photocatalytic property [J]. Chinese Journal of Materials Research, 2013, (3): 247
郝栋, 姜春海, 杨振明等. N掺杂TiO2的制备和光催化性能 [J]. 材料研究学报, 2013, (3): 247
12 Reddy K M, Baruwati B, Jayalakshmi M, et al. S-, N- and C-doped titanium dioxide nanoparticles: Synthesis, characterization and redox charge transfer study [J]. Journal of Solid State Chemistry, 2005, 178(11): 3352
13 Huang Y, Yang M, Xia J J, et al. Preparation of C/TiO2 composites and study of its photocatalytic property [J]. Journal of Wuhan Polyechnic University, 2014, 33(2): 33
黄昱, 杨明, 夏娟娟等. C/TiO2复合材料的制备及光催化性能的研究 [J]. 武汉轻工大学学报, 2014, 33(2): 33
14 Zhou H L, Ge F Z, Zou Z, et al. Progress in C-TiO2 nanocomposite photocatalyst [J]. Materials Reports, 2011, 25(S2): 166
周化岚, 葛芳州, 邹忠等. C-TiO2复合光催化剂研究进展 [J]. 材料导报, 2011, 25(S2):166
15 Jong G D, Vittal R, Park N G, et al. Enhancement of photocurrent and photovoltage of dye-sensitized solar cells with TiO2 film deposited on indium zinc oxide substrate [J]. Chemistry of Materials, 2004, 16(3): 493
16 Yang J, Xu M, Wang J Y, et al. A facile approach to prepare multiple heteroatom-doped carbon materials from imine-linked porous organic polymers [J]. Scientific Reports, 2018, 8(1): 4200
17 Molood B, Mohammad B, Reza O M. Photo oxidation DBT using carbon nanotube titania composite as visible light active photo catalyst [J]. Journal of Central South Univ.Technology, (2018) 25: 1642
18 Zhu X Y, Wang C, Wang J J, et al. Preparation and study of carbon-coated TiO2 photocatalyst [J]. Guangzhou Chemical Industry, 2019, 47(16): 18
朱雪漪, 王成, 王俊杰等. 碳包覆二氧化钛光催化剂的制备及研究 [J]. 广州化工, 2019, 47(16): 18
19 Wang C L, Li F, Yang K, et al. Materials research progress on carbon quantum dots-titanium dioxide composite photocatalysts [J]. Materials Review A, 2018, 32(10):3348
王春来, 李钒, 杨焜等. 碳量子点-二氧化钛复合光催化剂的研究进展 [J]. 材料导报, 2018, 32(10): 3348
20 Ke J, Li X, Zhao Q, et al. Upconversion carbon quantum dots as visible light responsive component for efficient enhancement of photocatalytic performance [J]. Journal of Colloid and Interface Science, 2017, 496: 425
21 Hao Dong, Jiang C M, Yang Z M, et al. The preparation of N-doped TiO2 and its photocatalytic property [J]. Chinese Journal of Materials Research, 2013, 27(3): 247
郝栋, 姜春梅, 杨振明等. N掺杂TiO2的制备和光催化性能 [J]. 材料研究学报, 20013, 27(3): 247
22 Li L, Chen Y, Jiao S, et al. Synthesis, microstructure, and properties of black anatase and B phase TiO2 nanoparticles [J]. Materials & Design, 2016, 100: 235
23 Li D, Jia J, Zhang Y, et al. Preparation and characterization of Nano-graphite/TiO2 composite photoelectrode for photoelectrocatalytic degradation of hazardous pollutant [J]. Journal of Hazardous Materials, 2016, 315: 1
[1] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[2] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[3] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[4] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[5] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[6] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[7] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[8] XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. 材料研究学报, 2023, 37(10): 731-738.
[9] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] WANG Yankun, WANG Yu, JI Wei, WANG Zhihui, PENG Xiangfei, HU Yuxiong, LIU Bin, XU Hong, BAI Peikang. Microstructure and Mechanical Properties of Carbon Fiber/Aluminum Laminated Composites[J]. 材料研究学报, 2022, 36(7): 536-544.
[12] TAN Chong, LI Yuanyuan, WANG Huanhuan, LI Junsheng, XIA Zhi, ZUO Jinlong, YAO Lin. Preparation of g-C3N4/Ag/TiO2 NTs and Photocatalytic Degradation of Ceftazidine[J]. 材料研究学报, 2022, 36(5): 392-400.
[13] LI Yuanyuan, ZENG Hanlu, PU Hongzheng, JIANG Mingzhu, WANG Zhongming, YANG Yimeng, GONG Xiangnan. Photocatalytic Degradation of Tetracycline by Si Doped Li2SnO3[J]. 材料研究学报, 2022, 36(3): 206-212.
[14] ZONG Ping, LI Shiwei, CHEN Hong, MIAO Sainan, ZHANG Hui, LI Chao. In-situ Thermolysis Preparation of Carbon Capsulated Nano-copper and Its Stability[J]. 材料研究学报, 2022, 36(11): 829-836.
[15] JING Qian, CAO Han, LIU Fangyuan, XI Huijuan, LI Chaoxiang, SHAO Yunhang, CAO Meiwen, XIA Yongqing, WANG Shengjie. Preparation and Photocatalytic Property of Iron-doped Titanium Dioxide Nanomaterials[J]. 材料研究学报, 2022, 36(11): 862-870.
No Suggested Reading articles found!