Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (7): 501-509    DOI: 10.11901/1005.3093.2020.275
ARTICLES Current Issue | Archive | Adv Search |
Environment-induced Brittle Wear Mechanism of K417G Alloy
WANG Zhensheng1(), XIE Wei1, PENG Zhen1,2, HE Yingqian3, ZENG Yanggen4
1.Hunan Provincial Key Laboratory of Mechanical Equipment Health Maintenance, Hunan University of Science and Technology, Xiangtan 411201, China
2.China Aviation Development South Industry Co. Ltd. , Zhuzhou 412002, China
3.Hunan South General Aviation Engine Co. Ltd. , Zhuzhou 412002, China
4.State Grid Hunan Electric Power Co. Ltd. , Loudi Power Supply Branch, Loudi 417000, China
Cite this article: 

WANG Zhensheng, XIE Wei, PENG Zhen, HE Yingqian, ZENG Yanggen. Environment-induced Brittle Wear Mechanism of K417G Alloy. Chinese Journal of Materials Research, 2021, 35(7): 501-509.

Download:  HTML  PDF(17769KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The friction and wear properties of K417G alloy in air, vacuum, oxygen, nitrogen, carbon dioxide, hydrogen, and argon environments with different relative humidity were assessed by means of a controlled atmosphere wear tester and SEM. Meanwhile, the stress intensity factor KI of the alloy wear surface crack is calculated based on linear elastic mechanics. The environmental sensitivity of alloying elements is also calculated based on energetics. The results show that under wear conditions, water vapor in the air with high relative humidity is the corrosive medium that causes hydrogen-induced brittle wear of K417G alloy. The water vapor reacts with γ′-Ni3Al in the alloy to form atomic H, which causes environmental embrittlement of the alloy. The environmental brittle crack may nucleate at the interfaces of γ/γ′and carbide/alloy matrix. The cracks not only extend along the interfaces of γ/γ′ and carbide/alloy matrix, but also enter the γ′ grains. The stress intensity factor KI of the crack on the alloy surface is smaller than the fracture toughness KIC of the alloy. Therefore, the contact stress on the worn surface of the alloy does not cause cracks wherein. Energetics calculations show that, in air, the occurrence of surface cracks on the wearing alloy is related to the Al content in the alloy, while the critical content of Al is 5.53% (atomic fraction).

Key words:  metallic materials      K417G alloy      nickel based alloy      Ni3Al      friction and wear      environmental brittleness     
Received:  06 July 2020     
ZTFLH:  TH117  
Fund: Natural Science Foundation of Hunan Province(2020JJ4312)
About author:  WANG Zhensheng, Tel: (0731)58290584, E-mail: zhsh_w@sina.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.275     OR     https://www.cjmr.org/EN/Y2021/V35/I7/501

CCrMoAlCoTiVBZrNi
0.189.03.05.310.04.40.750.0180.07Bal.
Table 1  Chemical composition of K417G alloy (%, mass fraction)
Fig.1  SEM images of microstructure of K417G alloy, (a) at low magnification, (b) at high magnification
Fig.2  Frictions and wear rates of K417G alloy in different atmospheres
Fig.3  SEM micrographs of worn surface of K417G alloy in different atmospheres, (a, b) air with 75% humidity, (c, d) air with 25% humidity, (e, f) oxygen, (g, h) argon, (i, j) hydrogen, (k, l) nitrogen, (m, n) carbon dioxide, (o, p) vacuum
Fig.4  SEM micrographs of cross sections of worn K417G alloy (a) crack intiation, (b) crack propagation, (c) crack straight propagation, (d) crack curvilinear propagation, (e) crack intersection and (f) peeling morphology
AlTiCrCoNiMo
EDS112.074.9816.515.8359.181.43
EDS212.755.0915.936.0258.821.39
Table 2  EDS analysis results of crack propagation regions for K417G alloy (atomic fraction, %)
Fig.5  Surface micrographs of worn K417G alloy after corrosion, showing (a) interface of γ/γ′ phases and (b) interface of carbide and alloy
AlloysE/GPaa/mmA/×10-3mm2Pm/MPaσp0.2 /MPaσb/MPaKIC/MPa·m1/2
K417G2060.0518.17561223790975[1]116[1]
Table 3  Contact area, average stress and mechanical properties of K417G alloy
Chemical equation△G/kJ·mol-1
2/3Al+H2O=1/3Al2O3+H2-290.0
1/2Ti+H2O=1/2TiO2+H2-207.3
2/3Cr+H2O=1/3Cr2O3+H2-115.6
Ni+H2O=NiO+H226
Co+H2O=CoO+H222.9
Table 4  Gibbs free energies of formation of oxides of main elements in K417G alloy
1 Zhang T C, Jiang X X, Li S Z. Behaviour of hydrogen induced corrosion wear of Ti6Al4V alloy [J]. Corros. Sci. Prot. Technol., 1999, 11(3): 142
张天成, 姜晓霞, 李诗卓. Ti6Al4V合金氢致脆性磨损机制 [J]. 腐蚀科学与防护技术, 1999, 11(3): 142
2 Niste V B, Tanaka H, Ratoi M, et al. WS2 nanoadditized lubricant for applications affected by hydrogen embrittlement [J]. RSC Adv., 2015, 5: 40678
3 Lunarska E, Stabryla J, Nikiforow K, et al. Boron alloying and laser treatment to improve corrosion and hydrogen resistance of 25G steel [J]. Mater. Sci., 2005, 41: 551
4 Akonko S, Li D Y, Ziomek-Moroz M. Effects of cathodic protection on corrosive wear of 304 stainless steel [J]. Tribol. Lett., 2005, 18: 405
5 Guo J T. Materlals Science and Engineering for Superalloys [M]. Beijing: Science Press, 2010: 108
郭建亭. 高温合金材料学 [M]. 北京: 科学出版社, 2010: 108
6 Ao S S, Luo Z, Shan P, et al. Microstructure of inconel 601 nickel-based superalloy laser welded joint [J]. Chin. J. Nonferrous Met., 2015, 25: 2099
敖三三, 罗震, 单平等. Inconel 601镍基高温合金激光焊焊缝的显微组织 [J]. 中国有色金属学报, 2015, 25: 2099
7 Shen X M, Liu Y C, Ma G. Tribology for Aero-gas Turbine Engine [M]. Beijing: Beijing University of Aeronautics and Astronautics Press, 2008: 319
沈心敏, 刘雨川, 马纲. 航空燃气轮机摩擦学 [M]. 北京: 北京航空航天大学出版社, 2008: 319
8 Stott F H, Lin D S, Wood G C. The structure and mechanism of formation of the 'glaze' oxide layers produced on nickel-based alloys during wear at high temperatures [J]. Corros. Sci., 1973, 13: 449
9 Hamdy M M, Waterhouse R B. The fretting wear of Ti-6Al-4V and aged inconel 718 at elevated temperature [J]. Wear, 1981, 71: 237
10 Iwabuchi A. Fretting wear of Inconel 625 at high temperature and in high vacuum [J]. Wear, 1985, 106: 163
11 Klaffke D, Carstens T, Banerji A. Influence of grain refinement on the high temperature fretting behaviour of IN 738 LC [J]. Wear, 1993, 160: 361
12 Xu X Y, Xu B S, Liu W J, et al. Study of fretting wear behavior of K417 nickel base superalloy [J]. J. Aeronaut. Mater., 2002, 22(4): 13
徐向阳, 徐滨士, 刘文今等. K417镍基高温合金微动磨损行为的研究 [J]. 航空材料学报, 2002, 22(4): 13
13 He Q S, Fu Y C, Chen J J, et al. Study on heat pipe grinding wheels when grinding superalloy GH4169 [J]. Diamond Abras. Eng., 2013, 33(4): 5
赫青山, 傅玉灿, 陈佳佳等. 热管砂轮磨削高温合金GH4169实验研究 [J]. 金刚石与磨料磨具工程, 2013, 33(4): 5
14 Qiao Y, Ai X, Liu Z Q, et al. Experimental investigation into milling of Nickel-based powder metallurgy superalloy with coated tools [J]. J. South China Univ. Technol. (Nat. Sci. Ed.), 2010, 38(8): 83
乔阳, 艾兴, 刘战强等. 涂层刀具铣削粉末冶金镍基高温合金试验研究 [J]. 华南理工大学学报(自然科学版), 2010, 38(8): 83
15 Ren J X, Yang M K, Li Y Q, et al. Grinding characteristic of Nickel based superalloy [J]. Acta Aeronaut. Astronaut. Sin., 1997, 18: 755
任敬心, 杨茂奎, 李雅卿等. 镍基高温合金的磨削特征 [J]. 航空学报, 1997, 18: 755
16 Su X F. On creeping grinding and crack experiment of superalloys [J]. J. China Univ. Metrol., 2009, 20: 46
苏旭峰. 高温合金缓进磨削烧伤机理实验研究 [J]. 中国计量学院学报, 2009, 20: 46
17 Wang Z S, Peng Z, Yang S S, et al. Wear properties of K417G alloy and Ni(Co)CrAlYSi coatings deposited onto K417G under atmospheric environment at room temperature [J]. Chin. J. Nonferrous Met., 2016, 26: 602
王振生, 彭真, 杨双双等. 室温大气环境下K417G合金及其表面Ni(Co)CrAlYSi涂层的磨损特性 [J]. 有色金属学报, 2016, 26: 602
18 Peng Z, Wang Z S, Yang S S, et al. Friction and Wear behavior of K417G alloy and NiCrAlYSi coatings from room temperature to 400℃ [J]. Chin. J. Rare Met., 2017, 41: 276
彭真, 王振生, 杨双双等. K417G及其表面NiCrAlYSi涂层的摩擦磨损特性 [J]. 稀有金属, 2017, 41: 276
19 Dollar M, Bernstein I M. The effect of hydrogen on deformation substructure, flow and fracture in a nickel-base single crystal superalloy [J]. Acta Metall., 1988, 36: 2369
20 Chen P S, Wilcox R C. Fracture of single crystals of the nickel-base superalloy PWA 1480E in hydrogen at 22℃ [J]. Metall. Trans., 1991, 22A: 2031
21 Liao E B, Guo J T, Wang S H. Research on fatigue crack growth behavior of DZ17G at room temperature [J]. J. Aeronaut. Mater., 1999, 19: 39
廖鄂斌, 郭建亭, 王淑荷. 定向凝固合金DZ17G室温疲劳裂纹扩展行为的研究 [J]. 航空材料学报, 1999, 19: 39
22 Wang Z S, Guo J T, Zhou L Z, et al. High temperature wear behavior of NiAl-Cr(Mo)-Ho-Hf eutectic alloy [J]. Acta Metall. Sin., 2009, 45: 297
王振生, 郭建亭, 周兰章等. NiAl-Cr(Mo)-Ho-Hf共晶合金的高温磨损特性 [J]. 金属学报, 2009, 45: 297
23 Yuan W Z, Qiu M, Li X J, et al. Study on tribological properties of steel-copper couples in different humidity environments [J]. Lubricat. Eng., 2010, 35(4): 24
袁文征, 邱明, 李喜军等. 不同湿度环境中钢/铜配副摩擦磨损性能研究 [J]. 润滑与密封, 2010, 35(4): 24
24 Jiang X X, Li S Z, Li S. Corrosive Wear of Metals [M]. Beijing: Chemical Industry Press, 2003: 342
姜晓霞, 李诗卓, 李曙. 金属的腐蚀磨损 [M]. 北京: 化学工业出版社, 2003: 342
25 Bowden F P, Tabor D, translated by Chen S L, Yuan H C, Ding X J. The Friction and Lubrication of Solids [M]. Beijing: China Machine Press, 1982: 91
鲍登F P, 泰伯D著, 陈绍澧, 袁汉昌, 丁雪加译. 固体的摩擦与润滑 [M]. 北京: 机械工业出版社, 1982: 91
26 Zhai J W. Rolling wear of rail and the safety assessment of surface crack [D]. Qinhuangdao: Yanshan University, 2018
翟建伟. 钢轨的滚动磨损及表面裂纹安全性评定 [D]. 秦皇岛: 燕山大学, 2018
27 Na S J, Li J, Ai L Q. Mechanical Properties of Metallic Materials [M]. Beijing: Metallurgical Industry Press, 2011: 82
那顺桑, 李杰, 艾立群. 金属材料力学性能 [M]. 北京: 冶金工业出版社, 2011
28 Zhang Y G, Han Y F, Chen G L. Structural Materials of Intermetallics [M]. Beijing: National Defense Industry Press, 2001: 338
张永刚, 韩雅芳, 陈国良. 金属间化合物结构材料 [M]. 北京: 国防工业出版社, 2001: 338
29 Liu C T. Environmental embrittlement and grain-boundary fracture in Ni3Al [J]. Scripta Metall. Mater., 1992, 27: 25
30 George E P, Liu C T, Pope D P. Environmental embrittlement: the major cause of room-temperature brittleness in polycrystalline Ni3Al [J]. Scr. Metall. Mater., 1992, 27: 365
31 George E P, Liu C T, Pope D P. Intrinsic ductility and environmental embrittlement of binary Ni3Al [J]. Scripta Metall. Mater., 1993, 28: 857
32 He C. Effect of hydrogen on tensile deformation behavior of GH690 alloy [D]. Shenyang: Northeastern University, 2012
何成. 氢对GH690合金拉伸变形行为的影响 [D]. 沈阳: 东北大学, 2012
33 Zhang D Z, Hsiao C M, Du G W. Energetical analysis of sensitivity of hydrogen embrittlement of ordered alloy [J]. Scripta Metall. Mater., 1993, 29: 901
34 Zhang D Z, Zou M D, Xiao J M. Energetical analysis of environmental embrittlement of intermetallic compounds [J]. Mater. Sci. Eng., 1997, 15: 17
张德志, 邹明达, 肖纪美. 金属间化合物环境敏感脆性的能量学分析 [J]. 材料科学与工程, 1997, 15: 17
35 Fu X C, Shen W X, Yao T Y, et al. Physical Chemistry (5th ed.) [M]. Beijing: People's Education Press, 2005: 483
傅献彩, 沈文霞, 姚天扬等. 物理化学(第5版) [M]. 北京: 人民教育出版社, 2005: 483
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!