Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (10): 730-736    DOI: 10.11901/1005.3093.2020.155
ARTICLES Current Issue | Archive | Adv Search |
Effect of Temperature on Tensile Properties of 6101 Al-alloy Wires
SONG Wenshuo1, SONG Zhuman2, LUO Xuemei2, ZHANG Guangping2, ZHANG Bin1()
1. Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China
2. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

SONG Wenshuo, SONG Zhuman, LUO Xuemei, ZHANG Guangping, ZHANG Bin. Effect of Temperature on Tensile Properties of 6101 Al-alloy Wires. Chinese Journal of Materials Research, 2020, 34(10): 730-736.

Download:  HTML  PDF(10416KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Tensile properties of a single-strand conductor of 6101 Al-alloy were investigated in the temperature range from -70℃ to 70℃. It is found that the 6101 Al-alloy wire has high strength and good deformation uniformity at the low temperature (-70℃). However, the yield strength and the ultimate tensile strength of the alloy exhibited a decreasing trend with the increasing testing temperature. The ultimate tensile strength and the yield strength of the alloy at 70℃ decreased by 10.9% and 9.3%, respectively, comparing with those of the counterparts tested at -70℃. From the analysis on the correlation of the work hardening rate and the yield strength with the temperature, it is found that the strain hardening rate of the alloy decreased with the increasing flow stress and the raising temperatures. In addition, the lattice friction stress has a strong correlation with temperature, which is the main factor affecting the yield strength of the alloy. Based on the comparison of the fitting calculated increment of the yield strength of the alloy to the corresponding experimental results, a model about the relation between the yield strength of the alloy and the service temperature was obtained, by which the appropriate yield strength of the alloy at different service temperatures can be predicted.

Key words:  metallic materials      6101 aluminum alloy conductor      strength      temperature      strain hardening rate     
Received:  09 May 2020     
ZTFLH:  TB31  
Fund: National Natural Science Foundation of China(51671050);National Natural Science Foundation of China(51971060)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.155     OR     https://www.cjmr.org/EN/Y2020/V34/I10/730

Fig.1  Schematic illustration of dimensions of the tensile specimens
Fig.2  TEM images of cross-sectional (a) and longitudinal-sectional (b) of the as-received specimens
Fig.3  Stress-strain curves of the specimens tested at different temperatures engineering (a) and true stress-strain curve at the true strain range of 0.2%~0.35%(b)
Fig.4  Relationship between ultimate tensile strength and yield strength (a), uniform elongation (b) and temperature
Fig.5  SEM images of the fracture surfaces of the specimens tensiled at different temperatures (a) -70℃, (b) -50℃, (c) -25℃, (d) 25℃, (e) 50℃, (f) 70℃
Fig.6  SEM images of the specimen surfaces close to fracture, tensiled at -70℃ (a) and 70℃ (b)
Fig.7  Curves of θvs (σ-σ0.2) of the specimens tensiled at different temperatures
T/℃XYk1k2Formula of strain hardening rate
-7028.533891.67479.275θ=39181(1-σ/330)
-5026.133091.75184.521θ=41108(1-σ/323)
-2527.033461.68482.617θ=39408(1-σ/318)
2519.526631.76591.043θ=41311(1-σ/303)
5017.431712.378121.494θ=55656(1-σ/305)
7016.022471.73493.625θ=40586(1-σ/289)
Table 1  Parameters of the specimens tensile loaded at different temperatures
Fig.8  Ratios of k1/k2 under different temperatures
Fig.9  Experimental and calculated data of yield streng-th increment of the specimens
[1] Karabay S. Influence of AlB2 compound on elimination of incoherent precipitation in artificial aging of wires drawn from redraw rod extruded from billets cast of alloy AA-6101 by vertical direct chill casting [J]. Mater. Des., 2008, 29(7): 1364
[2] Karabay S. Modification of AA-6201 alloy for manufacturing of high conductivity and extra high conductivity wires with property of high tensile stress after artificial aging heat treatment for all-aluminium alloy conductors [J]. Mater. Des., 2006, 27(10): 821
[3] Karabay S, Uzman I. Inoculation of transition elements by addition of AlB2 and AlB12 to decrease detrimental effect on the conductivity of 99.6% aluminium in CCL for manufacturing of conductor [J]. J. Mater. Process. Technol., 2005, 160(2): 174
[4] Hu J, Zhou T G, Li Z S, et al. Production status and development prospects of Al-Mg-Si alloy conductor [J]. Light Alloy Fabr. Technol, 2018, 46(01): 5
胡静, 周天国, 李振山等. Al-Mg-Si合金导线的生产现状及其发展前景 [J]. 轻合金加工技术, 2018, 46(01): 5
[5] Li Y, Du X, Zhang Y, et al. Influence of Sc on microstructure and mechanical properties of Al-Si-Mg-Cu-Zr alloy [J]. Appl. Phys. A., 2018, 124(2)
[6] Yuan W, Liang Z. Effect of Zr addition on properties of Al–Mg–Si aluminum alloy used for all aluminum alloy conductor [J]. Mater. Des., 2011, 32(8-9): 4195
[7] Zhou W W, Cai B, Li W J, et al. Heat-resistant Al-0.2Sc-0.04Zr electrical conductor [J]. Mater. Sci. Eng. A, 2012, 552:353
[8] Zhang H K. Study of the mechanical properties of Al-Si-Cu alloy under low temperature [J]. Sichuan Metall., 2013, 35(05): 51
张洪坤. Al-Si-Cu合金低温力学性能的研究 [J]. 四川冶金, 2013, 35(05): 51
[9] Liu Y, Zhang X M, Li H Z, et al. Tensile properties of three kinds of aluminum alloys at low temperature [J]. Heat Treat. Met., 2007(01): 53
刘瑛, 张新明, 李慧中等. 3种高强铝合金的低温拉伸力学性能研究 [J]. 金属热处理, 2007(01): 53
[10] Liu Y, Zhang X M, Li H Z, et al. Tensile properties of 2519 aluminum alloy at low temperature [J]. J. Cent. South Univ. (Sci. Technol.), 2006(04): 641
刘瑛, 张新明, 李慧中等. 2519铝合金的低温拉伸力学性能 [J]. 中南大学学报(自然科学版), 2006(04): 641
[11] Zerilli F J, Armstrong R W. The effect of dislocation drag on the stress-strain behavior of F.C.C. metals [J]. Acta Metall. Mater., 1992, 40(8): 1803
[12] Abed F H, Voyiadjis G Z. A consistent modified Zerilli-Armstrong flow stress model for BCC and FCC metals for elevated temperatures [J]. Acta Mech., 2005, 175(1-4): 1
[13] Lee W S, Lin C R. Deformation behavior and microstructural evolution of 7075-T6 aluminum alloy at cryogenic temperatures [J]. Cryogenics, 2016, 79:26
[14] Lee W S, Chen T H, Huang S C. Impact deformation behaviour of Ti-6Al-4V alloy in the low-temperature regime [J]. J. Nucl. Mater., 2010, 402(1): 1
[15] Tomota Y, Lukas P, Harjo S, et al. In situ neutron diffraction study of IF and ultra low carbon steels upon tensile deformation [J]. Acta Mater., 2003, 51(3): 819
[16] Lee W S, Lin C F, Chen T H, et al. High temperature deformation and fracture behaviour of 316L stainless steel under high strain rate loading [J]. J. Nucl. Mater., 2012, 420(1-3): 226
[17] Ye Y L, Yang Z, Xu X X, et al. Effects of Excess Mg and Si on the Properties of 6101 Conducting Wire and Its Mechanism [J]. Rare Metal Mat. Eng., 2016, 45(04): 968
叶於龙, 杨昭, 徐雪璇等. 过量Mg、Si元素对6101电工导线性能影响及机制 [J]. 稀有金属材料与工程, 2016, 45(04): 968
[18] Li Z, Li N, Wang D Z, et al. Low temperature deformation behavior of an electromagnetically bulged 5052 aluminum alloy [J]. Sci. Rep., 2016, 6(1)
pmid: 28442706
[19] Taylor G I. The Mechanism of Plastic Deformation of Crystals. Part I. Theoretical [J]. Proc. R. Soc. London, 1934, 145(855): 362
[20] Gutiérrez I, Altuna M A. Work-hardening of ferrite and microstructure-based modelling of its mechanical behaviour under tension [J]. Acta Mater., 2008, 56(17): 4682
[21] Estrin Y, Mecking H. A unified phenomenological description of work hardening and creep based on one-parameter models [J]. Acta Metall., 1984, 32(1): 57
[22] Dietze H D. Die Temperaturabhängigkeit der Versetzungsstruktur [J]. Z. Phys., 1952, 132(1): 107
[23] Wu Z, Bei H, Pharr G M, et al. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures [J]. Acta Mater., 2014, 81: 428
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] CHEN Jingjing, ZHAN Huimin, WU Hao, ZHU Qiaolin, ZHOU Dan, LI Ke. Tensile Mechanical Performance of High Entropy Nanocrystalline CoNiCrFeMn Alloy[J]. 材料研究学报, 2023, 37(8): 614-624.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!