|
|
Effect of Annealing Temperature on Microstructure and Martensitic Transformation of Cold Rolled Ti-13V-3Al-0.5Cu Shape Memory Alloy |
SUN Kuishan1, LI Jun2, MENG Xianglong1( ), CAI Wei1 |
1. School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150006, China 2. College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China |
|
Cite this article:
SUN Kuishan, LI Jun, MENG Xianglong, CAI Wei. Effect of Annealing Temperature on Microstructure and Martensitic Transformation of Cold Rolled Ti-13V-3Al-0.5Cu Shape Memory Alloy. Chinese Journal of Materials Research, 2020, 34(10): 721-729.
|
Abstract The effect of post annealing temperature on the microstructure, martensitic transformation behavior, mechanical properties and shape memory effect of the cold rolled Ti-13V-3Al-0.5Cu (%, atomic fraction) alloy was systematically studied by means of XRD, TEM, DSC and tensile test at room temperature. The results showed that the phase composition of the alloy at room temperature was mainly α" phase, together with a small amount of remained β phase, α phase and Ti2Cu second phase. With the increasing annealing temperature, the shape memory property increased firstly and then decreased. When the annealing temperature is 750℃, the alloy showed a good shape memory effect and the recoverable strain up to 5.3% when the pre-strain was 6%. Furthermore, the morphology of martensite transformed from a V-shape like self-coordinated-structure to a structure of single preferential orientation when the alloy was subjected to a proper cold rolling and annealing treatment. Lower reorientation critical stress and better interface mobility were the main causes for the improvement of shape memory effect.
|
Received: 14 May 2020
|
|
Fund: National Natural Science Foundation of China(51871080);National Natural Science Foundation of China(51571073) |
[1] |
Mohd J J, Leary M, Subic A, et al. A review of shape memory alloy research, applications and opportunities [J]. Mater. Des., 2014, 56: 1078
|
[2] |
Bai J, Wang X L, Gu J L, et al. Martensitic transformation and crystal structure of Ni-Fe-Ga ferromagnetic shape memory alloys [J]. Chin. J. Mater. Res., 2014, 28: 881
|
|
白静, 王新丽, 顾江龙等. Ni-Fe-Ga磁致形状记忆合金的马氏体相变和晶体结构的研究 [J]. 材料研究学报, 2014, 28: 881
|
[3] |
Xue P F, Zhang F, Li Y, et al. Progress in Ti-based shape memory alloys [J]. Chin. J. Rare Met., 2015, 39: 84
|
|
薛朋飞, 张菲, 李岩等. 钛基形状记忆合金研究进展 [J]. 稀有金属, 2015, 39: 84
|
[4] |
Zhang X P, Zhang Y P. Recent advances in research and development of porous NiTi shape memory alloys [J]. Chin. J. Mater. Res., 2007, 21: 561
|
|
张新平, 张宇鹏. 多孔NiTi形状记忆合金研究进展 [J]. 材料研究学报, 2007, 21: 561
|
[5] |
Li B Y, Rong L J, Li Y Y. Development of biomedical porous Ti-Ni shape memory alloys [J]. Chin. J. Mater. Res., 2000, 14: 561
|
|
李丙运, 戎利建, 李依依. 生物医用多孔Ti-Ni形状记忆合金的研究进展 [J]. 材料研究学报, 2000, 14: 561
|
[6] |
Firstov G S, van Humbeeck J, Koval Y N. High-temperature shape memory alloys: Some recent developments [J]. Mater. Sci. Eng., 2004, 378A: 2
|
[7] |
Lee Pak J S, Lei C Y, Wayman C M. Atomic ordering in Ti-V-Al shape memory alloys [J]. Mater. Sci. Eng., 1991, 132A: 237
|
[8] |
Lei C Y, Lee Pak J S, Inoue H R P, et al. Shape memory behavior of Ti-V-Al alloys [A]. Proceedings of the International Conference of Martensitic Transformations (ICOMAT-92) [C]. Monterey, California, 1992: 539
|
[9] |
Lee Pak J S, Lei C Y, Wu M H, et al. Microstructures of athermal and stress-induced martensites of Ti-V-Al shape memory alloys [A]. Proceedings of the International Conference of Martensitic Transformations (ICOMAT-92) [C]. Monterey, California, 1992: 533
|
[10] |
Li W H. Martensitic transformation and shape memory effect of Ti-V-Al alloys [D]. Harbin: Harbin Institute of Technology, 2015
|
|
李威瀚. Ti-V-Al合金的马氏体相变与形状记忆效应 [D]. 哈尔滨: 哈尔滨工业大学, 2015
|
[11] |
Yang Z Y, Zheng X H, Cai W. Martensitic transformation and shape memory effect of Ti-V-Al lightweight high-temperature shape memory alloys [J]. Scr. Mater., 2015, 99: 97
|
[12] |
Wang X W. Martensitic transformation and strain recovery properties of Ti-V-Al alloy with Sc addition [D]. Harbin: Harbin Institute of Technology, 2016
|
|
王新旺. Sc掺杂Ti-V-Al形状记忆合金马氏体相变与应变恢复特性 [D]. 哈尔滨: 哈尔滨工业大学, 2016
|
[13] |
Yang Z Y, Zheng X H, Wu Y, et al. Martensitic transformation and shape memory behavior of Ti-V-Al-Fe lightweight shape memory alloys [J]. J. Alloys Compd., 2016, 680: 462
|
[14] |
Horiuchi Y, Nakayama K, Inamura T, et al. Effect of Cu addition on shape memory behavior of Ti-18 mol% Nb alloys [J]. Mater. Trans., 2007, 48: 414
|
[15] |
He Y H, Zhang Y Q, Jiang Y H, et al. Fabrication and characterization of superelastic Ti-Nb alloy enhanced with antimicrobial Cu via spark plasma sintering for biomedical applications [J]. J. Mater. Res., 2017, 32: 2510
|
[16] |
Sun K S, Yi X Y, Sun B, et al. Microstructure and mechanical properties of Ti-V-Al-Cu shape memory alloy by tailoring Cu content [J]. Mater. Sci. Eng., 2020, 771A: 138641
|
[17] |
Sun B, Meng X L, Gao Z Y, et al. Effect of annealing temperature on shape memory effect of cold-rolled Ti-16 at.%Nb alloy [J]. J. Alloys Compd., 2017, 715: 16
doi: 10.1016/j.jallcom.2017.04.275
|
[18] |
Sun B, Meng X L, Gao Z Y, et al. Study on the deformation mechanism of the martensitic Ti-16Nb high temperature shape memory alloy [J]. Mater. Sci. Eng., 2019, 742A: 590
|
[19] |
Chai Y W, Kim H Y, Hosoda H, et al. Self-accommodation in Ti-Nb shape memory alloys [J]. Acta Mater., 2009, 57: 4054
doi: 10.1016/j.actamat.2009.04.051
|
[20] |
Inamura T, Yamamoto Y, Hosoda H, et al. Crystallographic orientation and stress-amplitude dependence of damping in the martensite phase in textured Ti-Nb-Al shape memory alloy [J]. Acta Mater., 2010, 58: 2535
doi: 10.1016/j.actamat.2009.12.040
|
[21] |
Cui Y, Li Y, Luo K, et al. Microstructure and shape memory effect of Ti-20Zr-10Nb alloy [J]. Mater. Sci. Eng., 2010, 527A: 652
|
[22] |
Takahashi E, Sakurai T, Watanabe S, et al. Effect of heat treatment and Sn content on superelasticity in biocompatible TiNbSn alloys [J]. Mater. Trans., 2002, 43: 2978
doi: 10.2320/matertrans.43.2978
|
[23] |
Ping D H, Mitarai Y, Yin F X. Microstructure and shape memory behavior of a Ti-30Nb-3Pd alloy [J]. Scr. Mater., 2005, 52: 1287
doi: 10.1016/j.scriptamat.2005.02.029
|
[24] |
Karimzadeh M, Aboutalebi M R, Salehi M T, et al. Effects of thermomechanical treatments on the martensitic transformation and critical stress of Ti-50.2at. % Ni alloy [J]. J. Alloys Compd., 2015, 637: 171
doi: 10.1016/j.jallcom.2015.02.195
|
[25] |
Khelfaoui F, Guénin G. Influence of the recovery and recrystallization processes on the martensitic transformation of cold worked equiatomic Ti-Ni alloy [J]. Mater. Sci. Eng., 2003, 355A: 292
|
[26] |
Sharifi E M, Karimzadeh F, Kermanpur A. The effect of cold rolling and annealing on microstructure and tensile properties of the nanostructured Ni50Ti50 shape memory alloy [J]. Mater. Sci. Eng., 2014, 607A: 33
|
[27] |
Mahmud A S, Wu Z G, Yang H, et al. Effect of cold work and partial annealing on thermomechanical behaviour of Ti-50.5at%Ni [J]. Shap. Mem. Superelasticity, 2017, 3: 57
doi: 10.1007/s40830-017-0103-6
|
[28] |
Zheng X H, Sui J H, Zhang X, et al. Thermal stability and high-temperature shape memory effect of Ti-Ta-Zr alloy [J]. Scr. Mater., 2013, 68: 1008
doi: 10.1016/j.scriptamat.2013.03.008
|
[29] |
Xiong C Y, Xue P F, Sun B H, et al. Effect of annealing temperature on the microstructure and superelasticity of Ti-19Zr-10Nb-1Fe alloy [J]. Mater. Sci. Eng., 2017, 688A: 464
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|